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ABSTRACT

This report is concerned with a proper treatment of disturbances

in the ionosphere. It develops the treatment of the excitation of

extra-low-frequency (magnetohydrodynamic-like) wave-motions in an

infinite, homogeneous plasma imbedded in a constant, unidirectional

magnetic field, for which the electrical conductivity tensor is easily

established and methods of analysis are highly developed.

The problem treated in some detail is the radiation by charges

traveling along the magnetic field with velocities comparable to the

characteristic phase velocity (Alfven velocity) for low frequency

waves. The problem resembles, to some extent, the ordinary Cerenkov

problem in which charged particles, by a collective mechanism, gen-

erate visible radiation when passing through transparent substances.

The ELF analogue -- which we call the magneto gas dynamic analogue

of Cerenkov radiation -- has several distinguishing features. For

one, the radiation is most important in a narrow cone of angles cen-

tered on the magnetic field line of the source. In addition, the

magnetic field of the wave is transverse but the electric field is
longitudinal. The disturbance is thus not circularly polarized as

these are not transverse waves. Also, in addition to the usual

Cerenkov component, for which the particle velocity must be greater

than a (the Alfven phase velocity), there exists a weaker component

originating from particles of velocity less than a.

The latter portion of the report represents a preparatory step

in the development of a Microscopic Approach to plasma problems, by

solving the first two equations in the BBGKY hierarchy in two non-

correlation limits. The possibility of deriving the dispersion rela-

tion for a sound wave propagating in a hard-sphere gas directly from

the linearized Boltzmann equation for hard spheres, is also discussed.

iv



S-2023-1

CHAPTER I

INTRODUCTION

The work reported here consists of two distinct efforts, The

first effort, will generally be referred to by the heading "Excitation

Problem". It aims at explaining the extra-low-frequency signals
observed to occur naturally(1) and also in conjunction with high al-

titude nuclear explosions(2) in the ionized regions of the atmos-

phere. Only the simplest model ionosphere(3) is used in this treat-

ment -- a uniform, infinite, homogeneous two-fluid plasma, neutral

overall, embedded in a constant uniform magnetic field; only Coulomb

and electromagnetic forces are considered; only the linearized aver-

age field (Vlasov) approximation is used to determine the dielectric

and conductive behavior of the plasma; and collisions are entirely

ignored.

The second effort alms at improving the description of the plas-

ma. This is done by treating the inter-particle forces in a higher

approximation, the result of which is to bring in collisions and

in other ways modify the dielectric and conductive properties of the

plasma. The modes of oscillation and propagation which then exist

for the plasma in interaction with the electromagnetic field are

expected to provide new insights into plasma behavior, and possi-

bly also into ionospheric phenomena, which are very diverse and little

understood. Because the microscopic treatment of the plasma is the

only feasible one in this endeavor we shall refer to the second

effort by the heading "Microscopic Approach."

Recent experimental and theoretical progress in geophysics

has greatly clarified the gross features of the ionosphere and

the exosphere. This progress has come about largely through direct

exploration of the earth's neighborhood by instrumented satellites,

and high-altitude nuclear and thermo-nuclear explosion experiments.

The satellite experiments measure the normal features of the several

ionized regions, together with naturally occurring disturbances in

1
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these regions. The explosion experiments measure the dynamical-

response properties of these regions, and are therefore complementary

to the others. The picture of the earth's ionized atmosphere which

emerges illustrates the competition between the influence of the earth's
magnetic field on the charged particles entering it and the particles'

influence on the earth's field. Where the particle densities are

relatively small, (such as in the Van Allen regions and in the arti-

fically created electron shells) , the charged particles follow the

characteristic Stormer orbits. However, where, the earth magnetic
field is sufficiently weak the field lines get dragged along (so to

speak) by the particle fluxes (as far as we know entirely from the

sun). The region around the earth which (apart from disturbances)

is dominated by and moves with the earth's magnetic field is often

referred to as the magnetosphere. Because the axis of the earth's

dipole field lines cross-wise to the plasma streaming from the sun --

(referred to as the solar wind) , the earth is effectively shielded

within its magnetosphere. Charges are deflected away from the earth,

or trapped in the field, or focussed towards the polar regions. As

a consequence, not all of the magnetic disturbances seen outside

the magnetosphere lead to magnetic disturbances at the earth's sur-

face.

The magnetosphere appears to be typically some 8-10 earth-radii
(Re) distant (from the center of the earth) on the sunward side,

and perhaps 20-30 Re distant on the opposite side of the earth.

Within these limits we may properly take the earth's magnetic field

to be constant, of dipole shape, and unaffected by the ionized

atmosphere which is distributed (somewhat unevenly) throughout it.

A proper treatment of disturbances in the magnetosphere -- which is

the object of the present work -- is hardly possible by analytical

methods if one wants to include the dipole nature of the ambient

magnetic field as well as the variations in particle densities

and particle flux densities. This is particularly true when one
wants to study oscillatory and wave-like phenomena at such low

frequencies that the relevant wave-lengths are comparable to or

2
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over-shadow the structure and spatial variations of the magnetic

field and particle distributions. However, so much remains to be

learned of a qualitative and semi-quantitative nature about the inter-

action of particles (natural and artificial) with the magnetosphere,

and about the propagation of disturbances generated within it and at

its surface, as to justify the study of more tractable situations.

In particular, in the present study, we develop the treatment of the

excitation of extra-low-frequency (magnetohydrodynamic-like) wave

motions in an infinite homogeneous plasma imbedded in a constant,

unidirectional magnetic field for which the electrical conductivity

tensor is easily established and methods of analysis are highly

developed.

The problem we treat in some detail is the radiation by charges

traveling along the magnetic field with velocities comparable to

the characteristic phase velocity (Alfven velocity) for low fre-

quency waves. The problem resembles, to some extent, the ordinary

Cerenkov problem, (4) in which charged particles, by a collective

mechanism, generate visible radiation when passing through trans-

parent substances. The ELF analogue -- which we call the magneto-

gas-dynamic analogue of Cerenkov radiation -- has several distin-

guishing features. For one, the radiation is most important in a

narrow cone of angles centered on the magnetic field line of the

source. For another, the magnetic field of the wave is trans-

verse, but the electric field is longitudinal, The disturbance is

not circularly polarized, (i.e., these are not transverse waves).

In addition, besides the usual Cerenkov component for which v, the

particle velocity, must be numerically greater than a, the Alfven

phase velocity, there exists a weaker component originating from

particles of velocity less than a.

We believe that some of the naturally occurring low frequency

disturbances noted on magnetogram records -- especially those

from observatories located in the more northerly, magnetically

active areas -- can be understood in terms of the Cerenkov mechanism

3
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with reasonable estimates of the particle fluxes even though at low

frequencies the effect is in general very weak. Possibly of even

greater promise is the application of our calculations to the hydro-

magnetic signals definitely known to accompany high altitude nuclear

explosions. Both of these applications will be presented in the sequel

to this report.

Chapter II is devoted to the development of the excitation formu-

lation, a development which proceeds naturally from an earlier report

by Cantor, Keilson and Schneider(3) that considered a non-local

(temperature-dependent) model of the ionosphere. The formulation

given there is carried over and brought to a useful stage. That

report and this are both motivated by a desire to found the theory

of ionized gases on a secure microscopic (kinetic) basis, to set

aside the doubtful macroscopic equations in favor of less doubtful

'molecular' equations that properly include the interparticle forces.

For the problem treated -- the zero-temperature collisionless plasma --

there is no practical advantage to the philosophy; the results of the

two approaches are identical as far as the electromagnetic response

functions are concerned. This is due to the fact that in the earlier

report the basic kinetic approximation was the average-field or

Vlasov approximation, that treats each particle as if it moved in

the average field of all others. The consequence for the zero

temperature plasma (and also the low-temperature plasma) is that

the molecular encounters(5) -- the true sign of 'kinetic' behavior --

were neglected. The later sections of this report explore the possi-

bility of bringing a more refined description into the theory (as

an improvement in the electromagnetic response function).

In Chapter III the linear electric field response to an impulse-

current source is computed in some detail for the frequency range

below the ion cyclotron frequency.(6) This "radiation Green's

Function" is the simplest function to illustrate the directional

properties of Alfven-like waves generated in a compressible con-

ducting fluid. The coupling of electromagnetic and kinetic pro-

cesses is by way of the Vlasov average-field anproximation.

4
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The radiation Green's function is an isotropic matrix of functions

exhibiting five distinct kinds of response to a point excitation.

First, there is the excited field. This occurs even in the absence

of an external magnetic field. It exhibits isotropic propagation

for those compont:..s whose frequencies are above the plasma frequency,

and damping for frequencies below the plasma frequency. Second,

there is a signal which is propagated at the Alfven phase-velocity

equally in all directions. This signal is characteristic of the

compressible fluid. Third, there is a signal which is propagated in-

side a double-cone centered on a magnetic field line with apex at the

source point, and which is damped outside of the cone. The narrowness

of the cone varies with the emitted frequency, becoming most narrow

at the lowest frequencies. It is this which corresponds to the Alfven
mode (propagation along the magnetic field) observed in incompressible

conducting fluids. The modification due to compressibility is such

as to make this part of the radiation field singular on the surface

of the cone. The fourth and fifth kinds of behavior are caused by

the interference or competition of the Alfven-mode with each of the

first and second kinds of behavior. When the interference is with

the (first) damped mode, the propagation in the cone is lost. When

the interference is with the (second) isotropically propagating mode,

the cone boundary becomes diffuse and the radiation is enhanced,

especially along the magnetic field direction.

The Normal Cerenkov Effect is examined in Chapter IV, and several

of the mathematical details that will be needed to calculate the

Magneto-Gas-Dynamic Analogue of the Cerenkov Effect are presented.

This calculation -- the main effort of the report -- is given in

Chapter V. We have already stated some of the ways in which the

Magneto-Effect differs from the Normal Effect. In both cases the

radiation appears only at a specific angle with respect to the motion

of the charge (same as the direction of the ambient magnetic field).

This angle depends only on the velocity (v) of the charge relative

to the Alfven velocity (a) . But whereas normally v must be greater

than a, now it may also be less than a, though this "anomalous"

effect is negligibly small compared to the main effect. (However,

5
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it has important theoretical consequences.) The radiation is, in
both cases, linearly polarized, but unlike the normal-effect the
electric field of the radiation is only along the ambient magnetic
field (B ) while the magnetic field of the radiation is only per-
pendicular to it. The "radiation," therefore, is in a "hydromagnetic"
mode. Furthermore, the rate of radiation, as a function of angle, is
greatest near the magnetic field direction, when v is very close to
but slightly different from a. However, it goes to zero when v = a.
The latter behavior is also true of the normal Cerenkov radiation,
but in the magnetic case it comes about through a cancellation of
two terms which, when v is not too close to a, give rise separately
to the "main" and "anomolous" effects.

Chapter VI is given over to a discussion of the temperature
corrections that may be expected to play a part in ELF propagation,
and they are found not to be important in the examples we have con-

sidered, though this is by no means always the case. More will be

said on this point in the sequel.

The final two Chapters represent a preparatory step in the
development of a Microscopic Approach to plasma problems. Chapter VII

shows how, in terms of a sequence of distribution function f (rvt)
f( 2 ) (rvr'v't) , etc., describing the average properties of an assem-
bly of particles in successively greater detail, one can formulate

the microscopic laws (7) of the system. The resulting equations are
solved in two non-correlation limits -- the first leads to the Vlasov
approximation; the second leads to the (generalized) Boltzmann
Equation, which includes the Vlasov limit. To illustrate its relation
to the more customary Boltzmann Equation we apply it to the case of

hard-spheres, actually using a limiting form of interaction poten-
tial to describe collisions. In the sequel we shall apply it to the
two fluid plasma with special attention to the rederivation of the
plasma conductivity. In Chapter VIII we discuss the possibility of
deriving directly the dispersion relation for a sound wave in the

hard-sphere gas rising the linearized Boltzmann Equation for hard
spheres, and find that the difficulties are great, even in the one-
dimensional approximation (which las been treated with some success

by other(8) methods).

6
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Summary and Outlook

To summarize: an improved understanding of ionospheric (and
other) plasma phenomena requires (a) detailed calculations of the

electromagnetic response to realistic excitations and (b) develop-

ment of methods for including in the plasma description other conse-

quences of the collective behavior than just the average-field,

space-charge forces. With regard to (a) we may say that although

there has been a great deal of attention to the magneto-ionic
modes, the more difficult, and tedious, excitation problems have

been generally sidestepped. In the present work we tackle the

problem of ELF wave-motions generated by charges moving along the
magnetic field, and in the sequel we shall include an additional

spiralling motion to duplicate the actual behavior of charges injected
into the earth's field without preferential direction.

With regard to (b) we can say that our aim is to include, with-

in the framework of a general formalism, the modificatiqns of the
electrical susceptibility and conductivity tensors which are a con-
sequence of the "higher correlations" of particle behavior. The

most important of such modifications will, for our purposes, most

likely be those due to internal collisions. For the ionosphere,

another kind of collision is important -- external collision, i.e.,

of electrons and ions with the neutral molecules of the gas. One

of our motivations in treating the hard-sphere gas is to provide

some idea for the analytical treatment of external collisions. In

earlier work(3) a Fokker-Planck model was used for this purpose,

but even though it had several nice features it led to no practical
improvement over the simpler methods used in the Appleton-Hartree

theories of ionospheric conductivity of a cold plasma.

Finally, in the next report we shall present the application

of the results of our calculations to both natural ionospheric ELF
phenomena, and to the artifically created ELF signals of the various

high-altitude nuclear explosion experiments.

7
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CHAPTER II

FORMULATION OF THE EXCITATION PROBLEM

In line with our program to deduce the macroscopic plasma behavior
from molecular laws, we shall write Maxwell's equation for vacuum
processes and deduce the dielectric and conductive parameters from
the net response of the charges and currents in the vacuum to ap-

plied fields.

V x E = - (2.1)

V • E = p/e (2.2)
0.0

V X B = 12"S + Lo• (2.3)

c

V . B = 0 (2.4)

Throughout this work we shall employ an implicit vector nota-
tion. No special mark will designate a vector, and it will be under-
stood that the electric field E, the magnetic field B, the electric
current density j, and the gradient operation V are vectors, while

the electric charge density p is a scalar and the time-derivative

-- is a qc3lar operntion. Furthermore, p and the separate compon-
ents of E, B and j are functions of the vector position r = (xyz)

and the time t. The "dot" denotes scalar product, the "cross" vector

product.
= 10~-7 N13•x1-

The constants 9c = 417 x 10 henries/meter and co t/367r x 109

farads/meter, are related by the velocity of light (c = 3 x 108 meters/se

according to

1 o = 1/c . (2.5)

9,I
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Consequently, charge conservation follows from the above:

OR + 0 (2.6)at

Finally, the Lorentz force (a vecotr F) on a particle of charge q,
velocity v (a vector)9 at rt (space-time coordinates) takes the form:

F = q(E(rt) + v x B(rt)) . (2.7)

[The applied fields will be a constant magnetic field and the
field of a prescribed charge and current source, or as we shall call
it an external source.] That part of p and j which is not prescribed

will necessarily have been induced in the plasma:

P = pext + pind (2.8)

j = 3ext + jind (2.9)

The induced charge and current densities are due to the motion
of the constituent particles, the equations of motion for which con-

tain the total fields E and B.

The plasma we have in mind is, in its undisturbed state, uniform,

homogeneous, and in equilibrium. The presence of a constant mag-
netic field disturbs only the isotropy of the plasma's response, but
not its homogeneity or equilibrium. This term is characterized by no
net charges or currents, no electric fields, and no magnetic fields
other than B0 . There will be fluctuations of these quantities be-

cause of the molecular nature of ions and electrons, but we shall
ignore these fluctuations relative to the disturbances which we do

treat. For our purposes the plasma will be described by entirely

continuous, slowly varying functions (slow relative to the fluctua-
tions).

10
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A disturbance of the plasma will be characterized by a non-

vanishing E and B, together with accompanying charge and current

densities. We should suppose that, in the sense of Ohm's law, there

is a linear relation between pind jind and E, B. We shall discover

that so long as the only source of anisotropy is B only E enters

these relations. They are:(3)

Pindt = - V.eO J (d 3 r r J' dt' X(r-r' ,t-t') .E(r't')

-cO -O0

(2.10)

iind(rt) = J (d 3 r') J dt' cr(r-r',t-t').E(r't') . (2-11)

-00 -c0

The quantities X (susceptibility tensor) and cr (conductivity ten-

sor) will be understood to be tensors, and dyadic notation will be

employed. If we use ijk,*.. = 1,2,3 to distinguish the components
of the vectors and tensors; then in more detail we can write:

Pind (rt) = - Vi I (d3r')) I dt' X (r-r'•t-t')E (r'tl) (2.12)

ij r' ti

jind(rt) = (d 3r') J dt' cY. (r-r',t-t') E (r't') . (2.13)

j r' t

These are non-local relations: p and j at one place and time

depend on E for all other places and times. Actually, microscopic

causality implies that only fields at earlier times determine p and

j. We may express this by the demand

X(t-t') = 0 t < t, (2.14)

-f (t-t') = 0 t < t' (2.15)

11



S-2023-1

and continue to extend all the integrals from -ooto +oo. Thus the

induced charge and current are given by fourfold convolutions of the

electric field with tensors characterizing the plasma's responsiveness.

That X and • are functions only of r-r' and t-t' is true because the

equilibrium state is independent of r and t. It is especially conven-

ient, in such cases, to use Fourier integral transforms since the trans-

form of a convolution is simply the product of the transforms of the
factors.

For notation we shall use the same symbol for the transform as for

the original function, and shall use a standard convention:

f~r ) C ( 3 k) 0 C ko-w

f(rt) = J e f(k.) (2.16)

(27r) _0 r
-a)0 -CO

Then

d #
P (kn) = -ik' c X (kA) • E (k0j) (2.17)

AM 1" 0 ft

3 ind (kA)) = cr(ko) "E (k0) . (2.18)

As we may say, these relations are "local relations in k-c0-space."

In ordinary parlance, wo is the (angular) wave frequency and k the

wave-vector of the k• component of the electric field.

From conservation of charge there emerges an important relation4 -o ext ext
between X and C. Since p 1 separately obey the conservation

equation, pmnd Iind do so too. Substituting (2.10) and (2.11) into
(2.6) , we realize that there is sufficient arbitraries in E(rt) to

conclude that

Vr*-(r--rIt-t') = E yr'.-X(r-r, 't-t') (2.19)

12
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or

k.C(kw) = -iE wk. X(k) (2.20)I 0 O f

in the everpresent dyadic notation.

From Maxwell's Equation we deduce the following second-order

equation:

(_V2 + 1 a2  1 _ (pext + pind) a0 a ext .d)2- -O-V) E = - •--Vp = #o 5-t. +2
j c at

(2.21)

or,

2 ik
(k - )E= -- (pe t(k) + pind(k))

c o

+ i 0 o(Jext (kw) + j (indLM)) (2.22)

or,

2 w 2 Pextex(k - )E + k(k.X.E) - ijO 0c'E = -i(k e ext
.2 ~ 0~ .0 ANIc o 0

(2.23)

making use of (2.17) and (2.18). Because of the conservation laws,
ext extcontains whatever significant information is in pe. (The con-Iext

verse is not true.) An equation containing j only is remarkably
symmetrical. Multiply (2.23) by k. , and factor out (k - w0 /c2)

after using (2.6) and (2.20):

I extk.E + k.X.E = - i petO . (2.24)

I
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Hence upon eliminating p ext, we get

2 2 ext
(k 2  -- )E -k (k.E) - ij4 ocr .E . .e2t2_ . _ _ - Po~.'2 .2.25)

C

Let us introduce the tensor X by the relation

I iE a~X . (2.26)

Then

[(2 o2 •1 k _62:*] . ext

[ kk) - X .E ioe (2.27)

and

k.X =k.X (2.28)

The symbol 1 is the unit dyadic; I is a dyadic; I.E E'kk'E k (k.E).
-& OW -ft. am A&A

The quantity in brackets in (2.27) is, in Cartesian components,

a matrix, whose inverse allows us to solve for E. The result, when
.%- ext.

transformed back to rt-space is the field excited by the current J4e

The formal solution is

Eko MA = w1 ext (kW)

4M 0) = 2 o2 :*2 ((k)). (2.29)

"(k2 -w2) 1- 2k -2
c c

ext
Let us evaluate the matrix before j

Introduce the scalars

1 (2. 30)
=k2 w2 /c 2

and

2 /c2 (2.31)
k 2 -142/C2

14
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Then

= 2 22 (2.32)k Q 1 _k 2 1a

c c

A
We first treat 1 - aX as a unit, and formally expand the denominator

in powers of P:

1 -X 1 aX 1 -aX

+*..j + (2.33)
1-X A-X1

The first term is irreducible; the second term is the outer prod-

uct of two vectors; the third term is like the second, except for a
scalar factor; each higher term contains another identical scalar

factor. A can therefore be written as two terms, by summing the geo-

metrical series of scalar factors.

A + k*k1 x a _o •_ al• x .• -_o 1"k ) 1
1-aX -X

(2.34)

It has been necessary to use the same symbol 1 for the unit
matrix and the scalar unity. The latter appears only in the large

parenthesis, which is the sum of the series of scalars:

1 + (k. .k)1+ 2 + 3 +

15
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We shall introduce the symbol

= =~ times inverse of 1 - aX)) (2.35)
1 - aX

for the important matrix that appears four times.

M M.kk.M
A = M + o (2.36)

1 - kM ok

(The denominator is a scalar, so we needn't worry about its position
in the formula, But we shall see to it that vectors and matrices are
arranged according to dyadic notation. It will then always be clear

how to convert them to component form.)

To proceed further will require a knowledge of X, i.e., essentially
the tensor conductivity of the plasma in its ambient magnetic field.
So long as the plasma is at zero temperature and contains no drifting

parts, X is identical to X. That is, the conductivity and suscepti-
bility tensors contain identical information. Referring back to (2.26),

this means that

= - i oWX (2.37)

which is a stronger condition than charge conservation (2.20).

When we ask for the low frequency waves and oscillations excited
by external currents, X simplifies immensely. Let us write (2.29) in

the form

E(k) = i lo(kw) . 3ext(k]0) (2.38)

If jext contains only low frequencies, E will, in fact, contain the

same low frequencies, What this means is that onlyA's correspond-
ing to these low frequencies are relevant for the solution E. Hence,

if we anticipate the later use of either low-frequency excitations

16
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or the low-frequency components of E and B, it will suffice to sim-

plify A according to its frequency dependence. The frequency range we
have in mind is below the ion cyclotron frequencies, but above colli-
sion frequencies. This is the Alfven, or magneto-hydrodynamic, range,
and is distinguished by one-dimensional wave propagation along the

magnetic field lines. .must necessarily be highly anisotropic to
achieve such a state of affairs. B t the simplifying feature in this

extra low-frequency region is that I is diagonal. Hence,:T - f

is diagonal, and is diagonal: simply the matrix of reciprocals.

In a Cartesian coordinate system, let 2 be the magnetic field
direction. Then the non-vanishing components will be (3) (9)

02

X.x =Xyy 2 (2.39)

i

S2

x =- 2p (2.40)Xzz 2

The sum is over the various components of the plasma; for example,

electrons and H+ ions. wop is the plasma frequency, one for each
component; 0 is the gyro-frequency, one of each component. We shall
let the total plasma frequency be woP

W2 2 (2.41)6p = opi"
i

It is approximately the same as the electron plasma frequency. Now

y 1-a (2.42)x Myy_ 1 - aXxx

171.
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M (2.43)zz I - a Xzz

The Alven velocity appears in Mxx it is designated by the symbol a:

2
a c 2 (2.44)

Hence,

"MT = Mxx = k2'_ W2 /a2 (2.45)

"= 2 12 2 2 (2.46)
k + cop/C -W /c

In this special case, M.k = k.M, a vector with the components

kM = (kxMT, k MTV kzMZ) . (2.47)

Further,

k.M-k = (k + k)M + k M . (2.48)

We can let kT be that part of the vector k which is transverse to

the magnetic field lines:

kT2 = ky2 + k2 (2.49)
y T x y

18
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Then

D= 1 - k.M-.k 1 - 2T - z

ofkt A% 2/a k + 2/C _ /c

2 2~
(-R k 2 1T M (2.50)

2 (c 1 -- ) kz -2 a +o2" -l
c c a_ W2

12

c

is
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CHAPTER III

THE RADIATION GREEN'S FUNCTIONS

We now turn to the problem of determining the radiation fields

caused by a single charged particle passing through the ionosphere.

The eye, or any other receiving instrument, is sensitive to the

frequency components of the resultant radiation. The frequency com-
ponents of the electric field at a point r, due to an excitation at
a point r', are written as a convolution integral

E(r W) = i W F(r-r, e(r c dr' (3.1)
AM A# 0 - j I

where A is the matrix element defined in Chapter 1, which appears

explicitly in Equation (2.36).

Our immediate task is t• determine A(r-r' ,cw) . The elements of

A in wavenumber (k) space, A(kM6o) can be obtained directly, as was

shown in Chapter 1, Equation (2.30).

Then, the elements of the matrix A may be written

A M +1 (M kj JMk) (3.2)ik ik+D(M )

where

"D k l+c2 TMM 33

rr

D=o2 -m2 1 c2~)Ms 33

is the limit of Equation (2.50) when wo << wop. Throughout this paper,
2 2with p 2 2

but~~~~~ note a) wt epc oW/

we have neglected w02/c 2 but not /a respect to CAP/c

Explicitly

21
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M 1 k2 2 (3.4)
xx T D x T

=M 1 2 k2  (3.5)
yy T D T y

A M2 k2 (3.6)
zz z D z z

A A I M2 k k (3.7)
xy yx D T x y

A1 M k k (3.8)
xz =Azx= T z x z

1

= A 1MM k k(39
yz zy D T z y z

It is readily seen from Equation (3.2) and from the nature of

M that the tensor is symmetric.

Substituting in (3.4) - (3.8) the expressions for MT, Mz and D,

we obtain

i 2 k 2 k 2 /a2 + W 2p/C 2

A x 2 2 (3.10)
Ax k2 2 2k + 2cp/C

kz - 2 + a32
a p

A1=2 2 c2 / °2a 22]+cAp/C2
1y _ k2 /a /c (3.11)

Ayy k 2 W 2/a2 Wo k 2 ( kc2+!2

P kkcA/ 2 WA 2  2
z - - + c 2

a

2 kI2 2 /a2 + W2/C2
A 2 1 + --c z2 ~ + D2_2a (3.12)

zz k + cW 2/C2 p kW2 2 22)

p

22
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2 kxk (W2/c2 + W2/c /

A7 A c xv k 2 (3.13)
yx 2 2 2 + C2 k+ CO /CP kk 2

2 kk
A x z (3.14)

xz zx W 2 2( k2

2 kk
A =A vz (3.15)
yz z

k2 W c2 k)

(r-r',0) is then obtained from A(kco) by means of the Fourier integral

theorem

S ik.R 3
A( ý,Co) = j A(kC) e d (2T) (3.16)

where R = r-r'.

Note that in the expressions for Aij, there appear five different

denominators, four of which have singularities which might contribute

to radiation.

We shall be interested in intcgrating these five expressions over

all k-space. We need concern ourselves only with the denominators

because the kx, ky and kz appearing in the numerators may be taken

outside of the integrals as appropriate partial derivatives since

k transforms to -i ,etc.x-x •ec

23I
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Let us obtain the Fourier transforms of these five denominators

which we shall call G1 to G5 inclusively. It should be noted that in

later calculations, only those terms that fall off as 1/r shall be retain-

ed, as the main interest is in the radiation parts of the fields.

Thus, the transformed matrix elements take the form

c 2 ai 2 2
_x G 1 G 3 + (i + )-- 2SG5 (3.17)

p

A 2  a 2 21+ )
Ayy G 1 c 2 Gy 3 + (( + a 2 G5 (3.18)

A A - -G - (i+ - - (3.19)Azz G2 02 z2 - y 2 8z2

A Ac 2  82 G1(li 82G

xy yx W 2 8x~y 3 y 8xay 5 (3.20)
p

c2 82
Ax =Az 2 A G (3.21)

xz zx 2 Txaz 3
COp

c2 82
A =A c2 c 2 G (3.22)
yz zy Wo2 Ty~z 3

p

where

G = d 3k e ikR (3.23)
(21)3 k 2 _ w2 /a2

d 3kk eikR (3.24)

2 (21)3 k 2 + W 2 /c 2

p

24
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G3= 3k eik'R

G3 d3k 3 e ikR2(3.25)
(2)3 2 W 2 kT

a

3 3• k ik'R
Gk e (3.26)

S (21r) ( 2  w2 2 W 2 kT2

(2w) 36202 k2 (3.27)

(k 2 - 2)(k 2  -- 2 -)
a a

G 5 d 3 dk 2e ik'R (.7
(2T) 2 W0 2 w 2 k,2 .7

where
2

WA 2
2p a2 (3.28)"= 2 2 '

Wi C

We must specify the manner of evaluating the singularities in the

inverse transforms G1 , G3 , G4 and G5 in order to have them correspond

to real physical problems. The method is simple. An ambiguity in the

inverse transform originates from the use of a Fourier integral not

absolutely convergent. One must supplement the original integrand with

a damping factor. For example,

00

G M dT eiwT G(T) e-E ITI E > 0 (3.29)

-00

where T = t-t' is the usual choice. In addition, we know that G(T)

relates the field at time t to a source at time t'. Causality im-

plies that G(t-t') = 0 if t < t' (T < 0). Hence,

2
25
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00

GW () = dTe e-i T G(T)

0Co

= dT ei(0+iC)T G(T) . (3.30)

0

Thus, for causal functions, the necessary modification is to replace

G (w•) ---o. G W+ie) .(3.31)

Then the integral (3.30) is absolutely convergent, and in the final
calculation, one can let E- + 0 after it has been used to define

the singularities.

Evaluation of G1

ik*R 3
G we' d- . (3.32)

Sk2 -o2/a2 (27)3

This is the well-known radiation Green's function propagator( 4 )

ei (w/a) RG1 - 41TR "

where R is the magnitude of R

Since the solution of G1 is known, it is advantageous to put
the integral in Equation (3.32) into another form which will be
encountered repeatedly in future calculations.

The denominator of the integrand in (3.32) can be "exponentiated."

If as discussed above, the wo in the denominator is replaced by (x+ic})

(A) ik_ 2 •2 6

G = 3 ids ei-A exp is(k 2 -(c -) exp(-2 - s) (3.34)
(27r) o a a

26
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2

The e a serves as a damping factor and makes the integral

(3.34) absolutely convergent.

Letting .--.-0, all terms involving c can be disregarded and

d3 k002

G1 = 3 1 ids ei-' exp -i(k 2  )s (3.35)(2w) 3aIo
The k-integral is evaluated by completing the square in the

J exponential

S~oo

= ids 2 (iR 2  Rx[1~ 2+G1 ids exp (is a-) exp (exp is(k + d3k0(2Tr) 3 a s J)Idk

i-12 co 2 32
- I ds s3/22 exp(i •a s)exp(i ) (3.36)

aw a
0

However, since G1 is known, the solution for this particular

j type of integral in (3.36) can be obtained.

In general for A > 0, B > 0.

00i2 i2 4s i eiAB

I ds s-3/2 e15s e B (3.37)
o2

I This result, Equation (3.37), will be used in subsequent calculations.

I Evaluation of G2

The second Green's function G2 is recognized as the Fourier
transform of the Debye-Yukawa potential

I
27I
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exp(- -- R)
G4 R (3.38)

The denominator is "exponentiated" to put the integral into a
form to be compared with later results. In this case, as contrasted
with GI, the denominator is not singular and thus a real exponential
can be used.

00~ 32
o (d k) 22

G 2 J edikR ee-kkt exp(- -2 t) (3.39)

Again, the k-integral can be evaluated3 by completing the square

in the exponential. Hence

co •2
1 Co W 2R 2 -3/2

G _1 exp(- -2 t)exp(- -) dt (3.40)2 8Tr 3/2 J c exp(
0

Since G2 is known, a solution for the integral in (3.40) is
easily obtained. For C > 0, D > 0

S-C t e- 4t t- 3 / 2 dt e-ce_ d D (3.41)
o 2

This result, Equation (3.41), will also be used later.

Evaluation of G3

The determination of the inverse transform

- (d3•j) _____

(23) i 2 (3.42)
(2) k2  w_2 kT

z a 2  y

28
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I proceeds along lines similar to those of G1 and G2. It shall be

shown shortly that two cases must be considered, one of which is

analogous to the radiation Green's function GI, the other related

to the Debye-Yukawa potential, G2.

SLet kT denote that portion of the propagation vector, k, which

is transverse to the magnetic field direction. Similarly, let RT
denote that part of the vector R which is perpendicular to the

I magnetic field direction.

"Exponentiating" the denominator in (3.43) and arranging terms,

1 one obtains

002 ý2
S ds ik Z ik s 2 ikTRT kT 2

G2 3  dk e e dk e exp(i s) exp(ia s)

(3.43)

Completing the square in both the kT and kz integrals leads to

001/2

G j ids 7 2 exp2(i s) e- (Z2 2
3-- J ( 3 (i -is2Z T(3.44)

0(27) a s kep s4

et2  2 =-2

Let Z RTy =R

If R is positive, the integrand in Equation (3.44) is exactly

the same as the integrand in Equation (3.37) , with A2 = w22 2and
S2 - 2

Since the solution of the integral in Equation (3.37) is known,

1 one can immediately write down the solution of (3.44)

iq-R 422I 3 - ea T e~xp (i Q RT
G 3R_4-X e aR ;Y2 (3.46)

29!
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This is analogous to the radiation Green's function G1 1 except that

the isotropic radius vector R has been replaced by the quantity R.
If i2 is negative -- consider the s-integral as a contour integral

along the positive real axis in the complex plane.

If one integrates along the positive real axis from 0 to Q
(see Figure 1) , and then along a circle of radius r0 in the first

quadrant of the complex plane to P and n takes the limit as ro0 -0o0
no additional contribution is made to the original s-integral.

IM

p

00 REAL
Q

Figure 1

For along the curved path OP, s is replaced in the integrand

byre ie where 0 < 0 < T.
0 2 2 2

The term ei w2/a )s now contains a damping factor for all e
as rO 0 00

The term

iR2/4s iR2 -iO

e = exp - e-e (3,47)

goes to unity for all values of 0, as r 0 -Poo. Hence, the extra
integral gives no contribution. Note that there are no singularities

within the quadrant to prevent use from deforming the path of inte-

gration to the positive imaginary axis.
Hence, if i2 < 02 i.e., R2 > Z2 there is no contribution to

the s-integral along OP.
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If, instead of integrating along OQ and then QP the integration

is performed directly along the imaginary axis from 0 to P, s is

replaced by it in the integrand in Equation (3.44),

Go 0 W2 R2 3/2
G3 = 3 f exp(- - t)exp(+ 4t)t- . (3.48)

87T a
0

But, for i2 < 0, this integral is exactly the same as the integral
expression of the Debye-Yukawa potential as given by Equation t3.41)

with C2 = w 2/a 2 and D2 = _i2. Therefore

Ge- •e4- Z2 .

G 3 = Ye a R2 _ Z 2 (3.49)

What is the physical significance of the conditions R2 > 0 or i2 < 07
-2 =2 =2
R 0, i.e., Z = RTY defines a cone in a three-dimensional space,

If for simplicity it is assumed that the source is located at the origiz

(rl = 0; z' = 0) , then this cone is further defined by

z rTy (3.50)

where r2 = z2 + r 2 is the distance to the field point. Inside the
2 2* cone, where z > rTy, the fields as given by G, are radiation-like

expressions which fall off as (z2-ry)/2 similar to the 1/r dependence
of a typical radiation field. On the surface of the cone the field

is singular and infinite. Outside of the cone, where r 2 > z2 , the
fields, as given by G3, are damped exponentially and do not corres-
pond to radiation. Therefore, if there is any rad.ation associated
with the Green's function G3 9 it is contained within the cone defined

2 2
by z = rTY.
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Evaluation of G4

The denominator in the integral expression for G4 is a product

of the terms appearing in the expressions for G1 and G3 respectively.

(d__ eiJ•.R _____

2(d 3  k 2 _R 1 2  (3.51)

k 2 k 2 _ w2 /a2 kT
a z y

Each term in the denominator can be "exponentiated" and when like

terms are grouped

oo 00

1 dt I ds dkz exp(ikzZ)exp(-ik 2z(s+t)

(27)2 o 0

,f d2 kT exp(ikTRT)exp ik2(s - t) exp q½(s+t) (3.52)

Again, the kz and kT integrals can be evaluated by completing

the squares in the exponents

Si. R 2 1 ýý r t21 r ~2
3/2 00 exP4 t exp (s+ t) expai 2 .(s+tI

G - F dt ds 1
0 0 (s- -) s + t)

(3.53)

Now consider a double change of variable.

Let

s+t = u (3.54)

t -(3.55)

Y
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The Jacobian of this tranformation is

J(s,t,ulv) -- - (3.56)

In determining the new limits of integration , it is noted that
the infinite quarter plane, bounded by the positive s and t axes, must
be covered by integrating along a pair of oblique axes, u and v. This
is accomplished by integrating over v from the line s = 0, which

corresponds to v = -u/y, to the line t = 0 which corresponds to v = u,

and then along the u-axis from zero to infinity

R2

u ,.T

S- 3/2 -1/2 2 Z2 u exp (i Z)G = i / du u exp(i L u)exp(i -) J dv v
0 -u/Y

(3.57)

Consider the special case of RT--*0. This corresponds to the
source being located at the origin and an observer looking along
the magnetic field direction. In the v-integral, for finite RT the

2singularity at v = 0 is damped out symmetrically for 1v1 < R/ 4 by

the presence of the exponential. This defines the Cauchy principle

value of the integral. In the limiting case of RT-)07 in order for
the integral to converge, one must bear in mind that we are concerned

with its principal value

u u

p "dv =In lvj =n y (3.58)
-u/Y -u/Y

Then

i-3/2 l 1/2 2 Z2

G4 (RT = 0) = -- I-- n Y 3/ J du u- exp(i - u)exp(i u)4 T1+%" 8•3/2 ja 24
8w a

(3.59)
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Making the substitution u = 1/x, the remaining integral takes
the form

3o2Z220 dx x-3/2 exp(i Tj- x)exp(i W- 2

a x
0

This integral has been encountered previously in the calculation
of G1 and G3 and its solution is given by Equation (3.37).

For the present case

A2 Z 2 B2 4w 2
A - 4  B 2 (3.60)

a

Therefore, from Equation (3.37)

-3/2 Z2 02Cf dx x exp(i -•- x)exp(i -- = a exp(i a Z) (3.61)
a x

0

Then

exp (i a' Z)
G4 (RT 0) = Jn expo ) n (3.62)4 T l+y 8• -I~

a

This expression differs from the previous radiation-like Green's
functions that have been calculated. G4 (RT = 0) represents a plane
wave propagating along the magnetic field axis. There is no decrease
in intensity with distance away from the origin. This result is not
completely unexpected. G1 represents an isotropic mode of radiation
and is analogous to the isotropic mode derived in Chapter I for the

case of zero sound velocity (Equation (1.13)) . G3, for R > 0,
represents radiation filling a cone of small angle about the mag-
netic field line and is related to the one-dimensional Alfven
mode of Chapter I (1.14) which is an idealization of the actual physi-
cal situation. G4 is a measure of the radiation resulting from the
interaction of these two aforementioned modes.
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For the case of RT / 0, an interesting integral representation

of G4 can be obtained.

If the partial derivatives of G4 is taken with respect to Rif

Equation (3.56) becomes
2

RT

ico 2 2 e 4v Y_
2 G 4 -3232 du u-2 e u e S4u dv v2 1 + yRT 0 -u/Y

(3.63)

The integral over v can now be performed since the differential
of the exponent appears in the integrand.

U

2 -l/2u 2 2 R 2
3 /2 4du exp (i 2) exp (i 2! - exp i 41 4)

S24 3/2 I a-/ 4 (iT1)T a

-u¥

0[ 2 2-3/2+ 2•R u exp(i -- 2)exp(i T) p )-exp(-i !Ty 1

8m ox Ti aý- 1 expi

(3.64)

If again the substition u = 1/x is made, both expressions in
the integrand can be put into a form similar to that of the integral
in Equation (3.37) , our known identity.

-3/2 xpci 2A-e F
i- R2  dx x-3/2 [e(ixp Z2+

8Tr3/- 2 R 2x(+- a -2-)p x 4 4) -- 4yxT O

(3.65)
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1- ly exp(i q!a 4Z + R2) - exp(i a q! (3.66)
8wR 2L lTa

Ta

The Green's function is then obtained by integrating over all

values of R2
T'

2RT

)_y 1) 2 [exP (iq)- w 2 aJ Z 40]
o 8-exp xpii-Z

o a RT

exp(i ý- z
+ a - -•In y (3.67)

a

where the term outside of the integral is the value of the Green's

function for RT = 0, which has been previously calculated (Equation (3.62)

It is seen from this integral expression for G4 , that for R y < Z2

the Green's function is radiation-like, and that it is partially the
2 2sum of contributions over cones described by Z = RTY (for fixed Z).

There is a contribution at RT = 0 which represents a plane wave solu-

tion on the magnetic field axis.

Evaluation of G5

The denominator in the integral expression for G5 is a product of

the terms appearing in the expressions for G2 and G3 . Physically, this

Green's function represents the interaction of the directional mode
2 2represented by G3 inside of the cone Z RRY with the attenuated mode

represented by the Debye-Yukawa potential. One expects the product

of the two to be a directional damped oscillation

d3 k ikR 1(

5 (2r) 3 2 2 2 T
k2 + ! k 2 2 .2/a2 -T

z c2 z 3y
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Each term in the denominator can be "exponentiated." An im-
aginary exponential must be used for the term containing the singularity.

00 0 2O ik Z
G5 - 3 1 ds j dt dkz exp[_kz(s+it)] e z

(2r) 3 0 0

2 ikTRT 2d2 kT e exp[-k2(s-i)] exp(- -2s)exp(i=t) (3.69)
L i)jc a

SFds j dt Y__ I [_ 4 ] (370)
87T3/ 2 0t (s+it) 1/2o o (s-i-)(sit

Y

Previously, we have obtained G4 exactly for the case of RT = 0.
In the present example, we shall consider the case when Z = 0 and show

that G5 (Z = 0) can be determined in an analogous manner.

Both s and t are real variables. If the upper limit of the t-
integration is extended to cover the circle in the first quadrant

by lim r ei, it is easily seen that there is no contribution toro*.•co 0
the t-integral along the extra portion of the path. 2 For, if t--)t
+ i-t - > 0, the term exp i wc /c t contributes e-.pc V which

p 2 tapproaches zero as r--rooand the term exp(Ri/4(s-i )) is bounded
in this limit. Then, as was shown previously in the calculation of

* G3, the contour can be deformed and the integration performed along

the positive imaginary axis.

It should be noted that the contour cannot be deformed in this
manner when Z :' 0.

iZ 2

"For then, the term e 4(s+it) becomes an isolated essential
singularity at a point on the path of integration -- namely where
t = is, and gives rise to an infinite contribution to the integral.
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For the Z = 0 case, this term vanishes and the above difficulty

is circumvented.

Then t can be replaced in the integrand of Equation (3.70) by iT.

CO O0 exp -_2 ( s+ exp 4s-)exp s•
G1 cs d

G5  8 73/2 (sJ (S-T) 1/2
o o (s+-)(s)

(3.71)

One now proceeds along lines similar to those used in the evalu-

ation of G4 . Introduce the double change of variable

s-T = u (3.72)

s+1. = v .(3.73)
Y

The Jacobian of the transformation is again -1+y/

The new limits of integration are:

Along u from -yv to v

Along v from 0 to oo.

Thus

0_ exp - v] exp [ - ]v

G=- Y 1 dv cv du (3.74)5 y+l 8.3/2  vI
o -Yv

The u-integral has an integrable singularity and can be per-

formed directly
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Sdu _2vi/2 [ y

G -

2 2
G5 _ 1Jdv v-I/2 exp(- R v)exp(-5 4TT 3/• l+i ;c2

(3.75)

Tf one now makes the substitution v = , the resulting inte-

grand is exactly the same as that in Equation (3.41) , the integral

expression for the Debye-Yukawa potential. Therefore

2 2
1 exp (--2)exp(- X)

G5 (Z=0) _T4w3 / 2 i+i4 odx cX3/2 (3.76)

CY0

and from Equation (3.41)

exp (- -P RT)- Y- 4 T' (3.77)
lT D i I _ W

i c

Thus, G5 (Z=0) represents an "attenuated plane wave" traveling in the

direction transverse to the magnetic field lines. This result is not

unexpected, since it represents the "interference" between the damped

Debye-Yukawa potential and the exponentially attenuated oscillation

given by G3 outside of the cone Z2 = R2y

As discussed previously, the deformation of the contour is not

valid for Z 9 0, and one cannot proceed in the manner described above.

Therefore, in order to get an expression for G5 (Z ?' 0) , consider the
following scheme

3
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Sdk ikj.R
G 5I OW 3_ 2___2_(3.78

(2T) 2 W2 kL2  
(3.78

(k÷ + -),(k2 2

2 2

2 k 2  
2S 2 T - Y + -! (y+1 ) (3.79)z a y c2

Therefore,

d3k ik.R
G (2) 3 2 e 2 ] (3.80)

(k2 + -R2) k2 + -P _ (y+l)k
c 21 c 2

Now decompose the product in the denominator into a sum of terms, by

the method of partial fractions

Y d3dk ik*R 1~ 3.1
y+l 2) 3 k2 2 2

z k 2 + _2 k2 (Y+l) 2
c c 2 y1k

and making use of the Fourier transform relationship between kz and
_a
8Z

dk 1
()3. +- -R k2 4 -R (y+1)k)

40[G2 + 1 G3 (3.82)
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from the integral expressions for the transforms of G2 and G3

Therefore,
1W

2 exp(- -R R) exp(i a R)G = G5 c a (3.83)
8 Z2 5 l+y 47rR - 4Tr R

82
The next task is to find the Green's function for the operator -az S0Z~2
g(ZZ') , where

a2
a 2 g(ZZ') = b(Z-Z') (3.84)

Then

G J5 g(Z,Z')f(XYZ')dZ' . (3.85)

From the physics of the problem, we know that

g(ZZ') = g(Z-Z') (3.86)

2 2
g(Z-Z') must satisfy 8 /8Z g(Z-Z') = 0 everywhere except at Z = Z'
and the change in the first derivative must be +1 as one passes

through the point Z = V from above. This Green's function is easily
obtained. Consider the function

1Z I vI (3.87)

Its slope changes by +1 as the point Z = Z' is traversed from above,

and its second derivative is zero everywhere for Z 9 Z'. Therefore,
this function satisfies 82/aZ 2  - Z'j = -(Z _ Z'). We shall see

that

g(Z - zI) = Z-zj(3.88)
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without any further homogeneous contribution gives the previously

calculated Z = 0 result. Then

z

G5 (Z) = _ 12 y (Z - Z') [G 2 (Z) + I G3 (Z)] dZ'
-00

00

1 ~yJ (z' - Z) [G (z' + 1 G (ZI)] dZ2 y,+i 1 2y 3
z

(3.89)

G 3 it must be remembered, has two functional forms, one denot-

ing propagation and the other damping. The appropriate form of G3

must be used in the integrals in Equation (3.89), depending on

whether the value of IZI in the limits is greater than or less than

RT 4. Therefore, Equation (3.89) can be explicitly written

2 _2 2G5= _• 1 p~ •- TY) x( - + R T
_+i ( i (- -R)

a _P
c

o +exp(id + 2 2 exp- U- R

+ Z' + RT) - aTY~4Tr y+l 0' [Z z 2 + R2  Z f2 _R 2y

for jZj > RT4T (3.90)

and
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21  Z2A) ill---2-- 2
exp R+Z) exp(- 2 ýzT )lI C7+i + a RT¥ j 2

c1a

OO W 2 2) 2RT Z, 2j)

Z - [exp- -R R + Z' exp(- 42 - Z 1
+ 4Z Y+ dZ' +

SoRT+Z' R -TZ'

I for IZI < R T 4 . (3.91)

In writing down Equations (3.90) and (3.91) we have made use of the

boundary condition that all the exponentials in the integrand approach

zero at Z' = + co. This corresponds to the conditions of the actual

physical problem where even the radiation modes are not infinite but

go to zero at a sufficiently large distance from the source. It is

seen from Equation (3.90) that the first term in that expression does

represent radiation. Thus, the interaction of the radiation term
W Z 2_ 2

a TY
-iY e

with the damped mode described by the Yukawa potential, leads to a

radiation-like term inside the cone Z2 = RTy I in G5

The reader can easily verify that Equation (3.91) reduces to the

result of our previous calculation for Z = 0, [c.f. Eq. (3.83)]

Y e c TG 5 (Z = 0) + i" 1F eT Wc

I
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The radiation problem has been so set up, that now with the

elements of the matrix A determined, one must merely evaluate a

single current source j(r,t). In Chapter VI, the radiation fields

arising from several different types of current excitations will be

calculated and discussed regarding their physical significance.
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CHAPTER IV

RADIATION FROM UNIFORMLY MOVING CHARGES

Among the processes by which charged particles are slowed down in

passing through solid and liquid material media, Cerenkov radiation is
one of the most efficient. Such a state of affairs might be true also

for charged particles passing through ionized magnetized 'fluids', or

plasmas, for which the conditions resemble, in some respects, the

conditions needed for Cerenkov radiation. It will be the purpose of

the next two chapters to reveal the analogy in more detail, and to

estimate the quantitative importance of the results. This work bears
on the dynamics of the ionized zones surrounding the earth, but is too

restricted to be applied directly to that problem. The charged particles
which originate on the sun, and reach the earth's magnetosphere, arrive
in bursts of plasma of densities perhaps comparable to that of the

ambient plasma, rather than as independent particles. What such
streams do upon reaching the vicinity of the earth must be investigated

by other means.

A moving charged particle does not radiate in traversing empty

space unless it is accelerated. The latter possibility is realized if

the particle has a component of velocity across the lines of the mag-

netic field. But such "cyclotron radiation" is usually important only
for extreme relativistic motions, because the accelerations involved

are not very great. The most efficient cases of the radiation result-

ing from single accelerated particles occur when fast particles are

brought to rest by dense solids ("bremsstrahling"): the fast particle

is deflected strongly by the Coulomb fields of the heavy nuclei, and
radiates considerably in virtue of this acceleration. But for gases,
and plasmas, this effect is also to be considered an unimportant

mechanism for the "stopping" of the particle.

One must turn to "collective behavior" to find an important

energy-loss mechanism. In crossing the plasma, the charged particle
accelerates the ions in its neighborhood. While no one of the

individual ions is accelerated greatly, there are, however, many
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which are set into motion, and with definite phase relations, so that

the actual fields can be quite considerable. This radiation of the

induced currents set up in a solid transparent substance was first

observed (accidentally)by Cerenkov in 1934, Its existence had not

been suspected even though closely related calculations had previously

been made of the field around a charge moving faster than the velocity

of light.(10) The field lies entirely in a cone behind the particle, and

is singular on the surface of the cone, The Poynting vector at the

surface is normal to the cone and outwards, but the rate of radiation

could not be calculated, In any case, the theory of relativity (that

followed the calculation) eliminated the possibility of charges moving

faster than light. Franck and Tamm in 1937 explained Cerenkov's

discovery by treating a charge moving faster than the velocity of light

in the medium. All of the details of the medium were compressed into

one function -- the frequency dependent phase velocity of light (or

the index of refraction). Their treatment of the problem is, there-

fore, often referred to as the "macroscopic approach," since the only

information needed about the material is its index of refraction for

light of different frequencies, a bulk property of the medium. It is

"a method of extreme generality, however, being restricted primarily to

"a linear approximation to the response of the medium to excitations.

But within the domain of linearity, one can treat nearly all important

problems of the interaction of charged particles and radiation with

neutral and ionized substances 1 1 )
(12)

As is well known from the work of Alfven, an incompressible

conducting fluid in a DC magnetic field has a one-dimensional, low-

frequency mode of propagation of electromagnetic energy -- a trans-

verse field propagating along the lines of force of the magnetic

field at a velocity a which can be considerably less than the velocity

of light in vacuum (c). This Alfven (hydromagnetic) mode is not

suitable for Cerenkov radiation, which is a charateristic of an

"isotropic" mode -- that is, one which propagates equally well in

all directions. The reason for this is that the instantaneous

Cerenkov radiation lies very nearly in the surface of a cone of

finite angle. At the very best, the direction of the magnetic field
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lines (and therefore of the propagation vector of the Alfven wave)could

be parallel to only one generating line of this cone; tl-ýre can be no
finite density of radiation in one line.

For a compressible fluid, however, there exists in addition to the
Alfven mode an "isotropic" mode whose phase velocity is the same as the
Alfven velocity. Since it depends on the presence of compressibility,

it is often referred to as a "hydromagnetic sound wave." (I3 It is this

mode that will be investigated for Cerenkov-like radiation. It is
well defined so long as the actual sound velocity in the plasma, E, is
much less than a; a larger value of s corresponds to a more rigid,
incompressible medium. For the zero temperature gas we have in mind,

s is near zero. The difference between the ordinary Cerenkov effect
and the hydromagnetic example lies in the interference of the one-

dimensional mode with the "isotropic" mode.

ORDINARY CERENKOV RADIATION

We have discovered that the tensor X(kwo) characterizes the electro-

dynamical properties of a "slightly disturbed" medium. For most solids
and liquids (in the frequency regions for which they are transparent)

X(ka)) can be adequately represented by a positive, diagonal, isotropic

tensor which depends only on wi:

X((k -) X ) 1 (4.1)

2Consequently, the propagation denominator 2-% becomes

k2 w 2 c
- 2(1+ X(W)).

c

The quantity

c2ac + Xo(M) < C (4.2)

is the "phase velocity" for light at frequency w0. In terms of the

notation of Chapter III we can show the following in this case:

47I



S-2023-1

M 2  1 2 2(4.3)

1 k.M.k _w /a (4.4)

2
S (1 - ý- k k) (4.5)

k - 2/ 2 W2

A _=_k2 __ ext/22ext

E k2  o (2 2 ext(k0) - a 2k p ext(k()) (4.6)

k~ -kE 2o oax

1 k x -co/a xjetk~)(47

We have used the conservation law:

k . jext . CO Pext (4.8)

The radiation of the external sources may be found from the Poynting

vector:

S(rt) = E(rt) x B(rt) (4.9)
[to

Let the currents be localized in space and act only for a finite time.

Consider a large sphere drawn with the radiating currents near its

center, which may also be taken to be the origin of a system of spheri-

cal coordinates: Q, 9z. An element of surface on the sphere will be

dA - rr2 sin 9 d Q d 9. Its normal will be along the radius and out-r
wards: n =F7 . The energy flux at time t through dA per unit time

will be

. S(rt)dA (4.10)
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The total energy passing through the fixed element (dA) will be

0o

dA•i . J dt S(rt) (4.11)

Measuring instruments (e.g. , the eye) generally respond to the frequency

components of the electric and magnetic fields; their contribution to

(4.11) may be found by introducing the transforms for E(rt) and 3(rt)

j making use of the Fourier integral theorem:

00
S -O0t -(M t

J dt e e 20 I (= b + w,) (4.12)

and noting that for the transform of a real function, f(t) , we must

have a condition on the complex conjugates:

Sf*() = f(_-a) (4.13)

We learn, then, that (4.11) becomes

CO

dAb d 2"n •o Re E(rak) x B* (r)] (4.14)
2o~

When we realize that d = dv where v = ow/2w is the frequency of the
2Tw

I observed light, we can identify

dI(v) --2 dA Re • .[E(Lw) x B*(rv (4.15)

ý.Lo

with the frequency distribution of the energy flux of the electro-

magnetic fields through the surface element on the sphere. If dI

approaches a finite non-zero limit as the radius of the sphere is

I increased, the flux may be called radiation, since it is lost energy.

I49



S-2023-1

A particle moving uniformly will radiate continuously. To use it

in the above scheme requires that we formally treat it as being on for

a time T. We take the path as linear, with velocity vectcr v, passing

through the origin at time t = 0:

p eXt(rt) = q b (3) (r-vt)

(4.16)
iext (rt) = qv b (3) (r-vt) exv (rt)

We shall return to (4.6) and (4.7) and rewrite them in the rw

representation, by means of a convolution in which the singular de-

nominator is isolated.

Using Equation (4.16), we obtain

E(rw0) = i4o (cv + a 2i)J d3 rtG 1 (r-r)pext (r '0) (4.17)

B(rw) = - o v x V d d 3 rG 1 C(r-r )pext (r'(0) (4.18)

where

i ae(r-r .
G1 (r-r,) I4 r-r I(4.19)

As is usual in radiation problems, we take the asymptotic form of

G . The source point r, is supposed to be near the origin. For

large r,

rA
Ir-r'1--frl no-

Sr' = Irl - n.r' (4.20)

Therefore,

i 2 IrlAi~irI
a -i a n.r' (4.21)

Gl(r-r )_e4r Irl e a
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In the evaluation of the fields E and B ol Equations (4.17, 18) the
i - r

gradients are allowed to act only on e a since otherwise the

powers of r produced would not be appropriate to a finite contribution

to the radiation. Hence, in Equations (4.17, 18) we may replace

I
V-- i • yir i - n (4.22)

a a

To evaluate the r' integral we writeI
00

pext(r'a)) = q j dt (3) (r'- vt)eiCOt (4.23)

_ 00

so that

•d3 -i a nr ext it( -a v
d r' e px(rw0)=q = dt a

00

(4.24)

= 2Tr q (Wo - a f.v)

Combining these results leads to the radiation fields

a r
E(rco) - ioqa(_ v) e r 2 W(1- .(4.25)

I
and

i iWr

B (rw) = iLora- v x n eTba (1 -• A.v(.6a4T r avi

which conribue to trn.) (4.26)
i which contribute to the power flux
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Re__ E(rw) x B*(rw) = ý0q w (v 2 - a 2 ) 6 c0(l- n.v) 2Trb(0)
RLo 37T I3IrI 2a a

(4.27)

The infinite quantity 2Trb (w-() = 27T (0). arose from the square of the

b- function in E, which in turn arose from the time-integral in Equation

(4.23). The use of a source which is on for all times must lead to an
infinite amount of power radiated. Only the rate of radiation is

physically significant in such a case. Formally, we can resolve the

difficulty if we let the source be on only in the time interval -T/2

to T/2, where T is chosen arbitrarily large. Then the integral in
Equation (4.24) is still 27Tb(0) to sufficient accuracy, but the value
of 27rb(O) at its singularity is only the overall time T. With this

understanding

27w (0) = T (4.28)

The rate of radiation becomes

2S•oq 2 2
dR - - (vq - a )2 (1 - cos Q) sin QdQdý2R=FTW 4Tra (va

(4.29)

in which we have chosen the vector v along the polar axis of spherical

coordinates, and have used

b(ax) (x) (4.30)

Using it again,

2 v2- 2dR = - q dv v-a cos Q - ) d(cos Q) dd

(4.31)

So, unless v is greater than a (the phase velocity in the medium at
frequency v = W) there is no radiation at all. The total radiation

2v
per unit time is
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R = Trpoq 2dv V -t--v2-a2'M (4.32)

1 the integral being over those frequencies for which v > a (v). All of

the radiation (at frequency v) lies in the surface of a cone of angle

0Q = cos 1-i( a ) around the direction of the particle. A transparent

substance is capable of supporting visible Cerenkov light by virtue
of its being transparent. The efficiency of the process is a consequence

of the high values of v2 in the optical region. As we shall see, the
corresponding process in the plasma behaves differently at low frequenci,

iI
I
I

I
I
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j CHAPTER V

THE MAGNETO (AS DYNAMIC ANAL6'3UE OF CERENKOV RADIATIONI
Let us now proceed to determine the total radiation produced by a

single point charge moving with uniform velocity v through a partially

ionizedinfinite, anistropic plasma, in the direction of an external

magnetic field. The plasma under consideration is again the upper

region of the earth's ionosphere. The point-charge excitation might

be one of the countless hydrogen ions which are emitted near the sun;

I it might traverse inter-planetary space in corpuscular streams, and

arrive at the terrestrial exosphere with speeds of 100 km/sec to 1,000

km/sec. in this region. Therefore, one might expect the uniformly
moving charge to radiate in a manner analogous to the Cerenkov effect.

In the normal Cerenkov case, the electric field produced by the

particle lies within a cone given by cos Q = a/v around the direction
of the particle, and all of the radiation lies in the surface of this

cone. As was shown previously in the calculation of the Green's

function G3, the plasma, for a certain mode of oscillation, behaves
like a conical wave-guide with propagation allowed within a cone

described by

tan Q 1 <K 1.S•-- n aw" aI p

This cone, which we shall call the Allven cone, arises because oZ the
basic anisotropy of the medium and is a pure magnetohydrodynamic effect.

In general, for v > a, the Cerenkov cone lies outside of the Alfven conE

when the two vertices coincide. However, when the particle velocity
becomes very near the phase velocity, the two cones will coincide and

one might expect to find another mode of Cerenkov radiation which

propagates in the conical waveguide, above and beyond the analogy to

the normal Cerenkov effect.

5
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CALCULATION OF THE ELECTRIC FIELD

Both collisional and thermal damping are negligible for ultra-low

frequency magnetohydrodynamic waves propagating along the lines of the

earth's magnetic field, for the collision frequencies and temperatures

encountered in the exosphere. The latter case will be discussed in

detail in the next chapter. Therefore, we can use the collisionless,

zero-temperature Green's functions, introduced in Chapter III, to

determine the radiation produced by a uniformly moving point charge
as described above.

The physically observable quantity, the frequency components of

t'he electric field, can be written as a convolution of the external
currents and the various Green's functions

E(rw) = 4 0 ow j d 3 r' A(r-r?,W) . j eXt(rc0) (5.1)

Sext
j is the current produced by the uniformly moving point charge.
Such a point charge, moving in the z-direction with velocity v is

described by

ext gA63je(rt) = gvz( 3 (r-vt) = qvzb(x) b(y) b(z-vt)

(5.2)

Then j eXt(rtw) is obtained by use of the Fourier integral theorem

e~•0 = i6°t j (rtl dt = qý b (x) b5(y) exp (i vý z)

(5.3)

Thus from Equation (5.1)

El(rw) = i Fo Wq dz' A (xy, z-z',I0) exp(i ' z
o0 iz v

(5.4)
56



S-2023-1

where

c2  2

A z . -- G3  (5.5)xz ~2 axaz3
p

Ac 
2 )2

Ayz 2 ayaz G3 (5.6)

p 2 •2

A G 2 a G U- (5.7)
zz 2 W 2 a 23 - ( (

and

WA 2 2

W 2 c2

G2' G39 and G4 are the zero-temperature collisionless Green's
functions discussed at length in Chapter III.

G2 (rtw) is the exponentially damped Debye-Yukawa potential,

exp (- -• Irl)

4m Irl

which can be neglected insofar as radiation effects are concerned.
Normally, this term would be important for the case of the static
charge, but at zero-temperature, the static electric field is also

zero.

Making use of the result

i a i-z' i - '
dz, f(z-z')e v - J dz' e v f(z-z')

i -Zv(5.9)

• = i dz'f(z-z')e
57
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[with the integrated terms vanishing because we demand that f(z-z') = o

at z' - + 00] , the electric field can be rewritten

2 i z'
E(rw0)-- iyoJq (- c C v V dz' G3(xYz-z')e v

P
(5.10)

+ ip0 wq Y 0 2 z dz' G4 (xyz-z')e v

W 2 c2 (4) A
= o 2 v qV0 + z (5.11)

0)
p

where
60)i --I z

dz' G3 (xyz-z')e v (5.12)

is that part of the field due to G3 , and E(4) is that part of the field

due to G4 . Furthermore, since i0WB = VxE from Maxwell's equations, and
(4)the curl of a gradient is zero, B is determined entirely from E

Our first step is therefore to calculate E The Green's function

G4 can be written as a convolution of G1 and G3.

G 4(xYz-z') = dr'' G (r-r'') S3(r1-r1)dr1' (5.13)

since in wave-number-frequency space, G4 is just the product of the

other two, by definition.

We shall use to best advantage, an integral representation for

G3 that was developed earlier, rather than its explicit form which

denotes propagation inside and damping outside of a cone of angle

Q = tan-
1  1

V5
58



S-2023-1

- ds [I12 (z' '-z ') 2-r Y
83 3/2 o 3/2 e2 4s

8 0s La

(5.14)

then

S/2 3 00 (z' -'°' ",0 W + 1 A

•3 =- /2 2 3/2 4s$3 v 0 s Ia

x exp(i Z) G (r-r'') (5.15)
v 1

Performing the z' integration first

Jexp i z' exp(i z'I exp(- i- s) (4mis)1/2
v exv~-J le_~ L i V•

(5.16)

G1 is the isotropic radiation propagator

exp. (i a r-r''I

Gl(r-r'') 4wIr-r'I (5.17)

where r is the point at which the field is measured and r'' is the

source point, relative to a suitable chosen origin.

As we are interested in the fields at large r and in the

radiation through a sphere at infinity, let us take the asymptotic

form of G1 for the case Irl >> Ir''!. Then, Equation (5.17) becomes
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exp(i a r) exp(-i r .

G1 (r-r) (large r) =4T I r a (5.18)

where n is a unit vector in the direction of r. Then

E(4) = [�o_ q y + 1 3 exp(i • Irl A

10r 2  ,Y v2 r z

002

x -- ds dz''dx'dy't exp i - - s-) 4 exp i z a r
o [a 2  v2  4s a j

(5.19)

Next perform the z'' integration which leads to a s-function

dzII exp. i[--"'- a n z I 2Trb hi" (5.20)

AA
where n^ is the z-component of the unit vector n by z. The x'' and y''

integrals are similar

dx'I exp i-( 4mx1'2 - w x) II exp(i -1 n 2 )
a x a

A2 (5.21)
A2 re la e by 2.

The y'' integral yields a similar result with nx replaced by

Substituting the results of these three integrations into Equation (5.19)

we obtain
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3e x p U N r 0(i *, 2 A , .2 )
E(4) _ q Y + 1 e irI) a _2)2 .2 (n +n )

- - ___ ___ a idse2v 2 q exp is ( )+ Y) v 0V a A

qwU b -Cos Q&Ioq ý 0 Y + 1 A "-' al• ) (v a" -- C S Q
-a nZ) 2-- z r av •2 (5.22)

2v (0 
-- nýi ) )_w5 v a z 2v 2  yIr c2__ _~ _ -

a 2 Y v

A 2  A 2 2
where we have replaced n and An + n 2 by cos Q and sin 2 respectively.z x y
Equation (5.22) gives the electric field due to the term containing G4.

It lies entirely in the z-direction and falls of asT7 like a typical

radiation field. It should be noted that the only approximation used

in obtaining this result was to replace the isotropic propagator G1 by

its asymptotic value for large r since we are concerned with field

measurements taken at points a great distance from the origin (or source).

Otherwise, the calculation is exact.

Next, we must calculate the scalar potential ý which represents

that part of the electric field ;due to the Green's function G3.

Jdz' G3CxYz-z')exp(i U z') (5.23)

Again, using the integral expression for G3 we can perform the z'

integral to give

r 2 121 rt2Y)
00 exp (-Ž - -) exp(-i

€ (4TTi) 1/2 o z ds a2 v (5.24)=exp(i-v z) Jds5.4
8TT3/ 2  v

Leaving ý in this integral representation, the electric field

can now be written as
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i1/2 oq W 2 C 2 2 w2 irT 2y

E(rc) = 4 [exp(i z) Lx a - - exp(- -s(r0 • •2 v v 0- ( a 2 2 ]4

3 exp(i ýrr) r b(- - - cos Q)Yot0% + 1 A a (v a
2v 2  Y r W 2 + sin2 a2 (5.25)

a Y v

CALCUALTION OF THE MAGNETIC FIELD

The magnetic field is obtained from the electric field by use of

the Maxwell equation

Vx E
B x iE (5.26)

As mentioned earlier, only E (4)contributes to B because the curl of a

gradient is zero.

Therefore,

iWB =Vx• (5.27)

where * is the magnitude of E But using the well known vector

identity

VA*XV (5.28)Vxzt = - x ( . )

and keeping only the leading or i/Irl term after differentiating

(which brings down a factor of L), we obtain
a

An
B~ ~zx a (5.29)

where n" is a unit vector in the r-direction. Explicitly
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3[Loq exp(i IrI -M Cos2oqa Y + 1 2 ( a (+xn - n) (5.30)
2v2a Y Irl W2_(i+ sin2O) 22 Y x

a Y v

where A and j are unit vectors in the respective directions.

CALCULATION OF THE TOTAL POWER

The Poynting vector S(rwo) which denotes the total energy radiated

per unit area is constructed from the electric and magnetic fields
according to the prescription

S(rtw) = E(r0o) x B*(rtw) (5.31)

The magnetic field is entirely due to the Green's function G4 .

The electric field consists of terms involving G3 and G4V namely

and * respectively. Therefore, the Poynting vectcýr will contain

terms involving the products G3 G4 and G4 G4 . We shall show that the

total power due to the terms involving G3 G4 vanishes over a surface

at infinity and that only the E(4) part of the electric field con-
tributes to the radiation. The Green's function G3 represents pro-

j pagation inside and damping outside of the Alfven cone of small

angle Q = tan- I . We expect that only the z-component of the
wo a

part of the Poynt~ng vector involving G3 will contribute to the total

power, since the transverse components lying wholly outside the conical

waveguide will be completely attenuated at large enough distances.

Therefore, we will construct Sz, the z-component of the Poynting

vector, which is independent of terms involving the product G4 G4 9
integrate this expression over the infinite plane parallel to the

xy plane, at z=z 0 and then show that this latter quantity vanishes

as z 0-0oo

II
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o +• 1 w5 22 v* -E E B * -- c __
z= x y y x Y2 3 2 w wo2

S v a p --•(+ sinY 2
a v

exp (- i a a0) w2 w2 s

Irn 2  (x • + y o exp i(a v2)J

exp(- 4s) (5.32)

dRPj i2 jnz" S dx dy is the total ener-jy radiated per unit frequency

through an infinite plane parallel to the xy plane at z=zo.

00 (v - cos )

dRw const. exp. (i v z) jdx dy o 2ac(2sinaQ 2

(xp + a _r_)

a (x a + y 2 exp2i(- - -)s

ir2

exp.(- -4 -- (5.33)

The 5-function imposes a condition on G. Let us make the double

c. ange of variable from xy ---> r,ý and then another change from r --> rT

where of cojurse

x = r cos 9 sin Q (5.34)
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y r sin 0 sin Q (5.35)

-r 2 -+2Z
rrT zo(5.36)

and dxdy -- > rdrd -- rTdrTd0  (5.37)

Furthermore

x + - rTr (5.38)

There is no azimuthal angle dependence and the integration of

yields 27r.

Manipulating the b-function which now involves rT (since cos

z

2 0 2 ) according to the formula
rT +

6(x-xo)
b(f(x)) where f(x) 0 (5.39)

I o
leads to

dRa) const. x exp. (i v zo) 0ds 6rdrt trt0

I 02 3/2

2Zr rT ex2 s2 4s)

(5.40)
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where

2 1/2
rT z 0(2 v ) (5.41)

a

and

-2 -9  - -- (5.42)

a v

Therefore

dR 2 0o2 i z v2
d Rc -:: 4 EL3 2a2 exp(i zo) z-z exp(iv s) exp(- 4s (- -4 02 ya v3 v 0 0 a 4

V VO 0 s ~ a
p

(5.43)

We are primarily interested in the dependence of the total power on

Zol for we wish to show that the above expression will vanish as we

remove the plane to infinity.

The s-integral is of the form

00oods 2ii,2

-i exp(iv s) exp. (- dt exp(-i• )exp(--•-)
O S

(5.44)

where the change of variable s- ' has been made and
t

2 z ~02 v252= °--4(-2 _i1) (5.45)

a

Now effect another change of variable

6 2t = x (5ý46)
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and the integral becomes

1 j dx exp(- ix) exp. (' ) (5.47)

1. 12

The -ý in front of the integral contains a - which cancels the zo2

in Equation (5.43)

Thus, the entire z° dependence of the total power (except for the

harmonic term) is contained in the integral in (5.47)

If the path of integration is extended into the complex plane to

include the infinite quarter-circle in the lower-right hand plane,

there is no added contribution to the integral along this path since

if x is replaced by x-iy, y positive, exp(-ix) -- 9 exp(-ix) exp(-y)

which approaches zero as y -- > 00 and the other term in the integrand

is bounded. This argument is analogous to that given for extending

the contour when evaluating the integral expression for G2 in ChapterIl.

Then, since there are no poles contained within the path of integration,

we can deform the contour and integrate along the negative imaginary

axis. This is equivalent to replacing x by -iy and integrating from

o to 00. Thus, the integral becomes
00

-i j dy exp(- y) exp(- '• ) (5.48)
oy

from which it is readily seen that the expression tends toward zero

as v 22 gets very large. For if v252 = 0, the integral has the value

I 1 x, and as v 2 starts to grow, it diminishes the y = 0 contribution
from exp(-y). But b is proportional to zO 2 and thus as zO

j both the integral in Equation (5.48) and the expression for dR the

remainder of which is independent of z°, tend to zero.

Therefore, that part of the Poynting vector which contains the

product G3 G4 9 when integrated over an infinite plane, parallel to

the x-y plane, at z°, gives no contribution to the total power when
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the plane is taken at very large distances from the source. Thus,

the only part of the Poynting vector contributing to the total radiated

power is that which contains the produc.t G4 G4 .

The remaining portion of the Poynting vector, which we shall denote

as S (4), results in a uniform flux through a sphere even when the radius

of the sphere is infinite. This flux may be considered radiation, since

it is energy lost to the system. As we shall see, the total power

radiated is a rather small quantity, but it seems to be the dominant

process for removing energy from the incoming particle, since the power

lost by synchrocyclotron radiation at nonrelativistic velocities is

negligible, and the Bremsstrahlung effect is absent.

S(4) ,which depends on E(4) and B, contains a double 6-function.

Then, as was discussed in Chapter V, the integral over the double

6-function yields a time T, which is the value of 27T6(0), accounting

for the fact that the current source is not on for all time but over

an arbitrarily large time interval T.

2 2 v

S (4) E x B* - o (Y+l) 2 a a

Y av 2  L2 (1+ sin2) -

_q2 A A

g-2z x (z x n) (5.49)2
r

and integrating over a sphere of radius r gives the total energy

radiated

dI 2 S(4)

CLo 6  2 2 T (w-a-cs Q) sin(2Y d(cos Q)d0

2 2q 4 2TrJ 22av Y (,+ sin2 Q W2 2

(5.50)
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There is no azimuthal dependence and the 0-integration yields 27T.

j T is the actual value of b(O) and represents the time interval over

which the current acts.

Since S(4) is a function of r and wi, dI W represents the tctal energy
radiated rather than the total power. To obtain the latter, we must

Sdivide the above expression by the time interval T. Thus,

ai dI = _o a4 1 b (cos - v_dRW = T - a2 3 2s2 d(cos 0 (5.51)

v a

and

to 4 2ad 14 _2ý 05dw b(cos @ - vv d(cos 0) (5.52)
2 3 4 2v u~p a

v

Again, as in the normal Cerenkov effect, there is no radiation

unless v is greater than a(w). Then, all of the radiation lies in

the surface of a cone of angle Q = cos-1 a around the direction ofI the particle. v

The total radiation per unit time is
ii c 4 cI W .5_dw

R =5 3 4J ' (5.53)
23 2
v ~o a

I p 2
v

Here, the total radiated power varies as the sixth power of the

frequency as opposed to the normal Cerenkov case when the frequency
dependence went as w . Furthermore, the factor of v2 - a2  which

appeared in the numerator in the normal Cerenkov case now is found
in the denominator. This suggests that the radiation becomes

arbitrarily large when v --> a. But, when v*a, cos 0 = 1 and the

radiation would be directed along the magnetic field lines. FromI 69
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the symmetry of the problem, one expects the radiation to fall to zero
along the direction of the incoming particle. We must look more closely
at the fields to determine the correct expression for small angles, Q,

in the limit of v -> a.

In the calculation of E (4)the asymptotic, large Irl , far-field ex-
pression for G1 was used. This asymptotic form is valid only if the

source term mutiplying G1 in the integrand is localized. In the normal

Cerenkov effect, the source term is merely the current, jext = qvb(z-vt)
which is indeed localized. However, in the present case, the source
term is the product G3J which is not localized since G3 is singular
on the surface of the Alfven cone. Thus, the asymptotic approximation

for G1 should be valid at large distances provided that we remain also

outside of the cone. These expressions are incorrect for very small
angles lying outside the Alfven cone and an alternative method must

be used.

Returning again to the expression for E(4) , Equation (5.10),
let use for G4 the integral expression developed in Chapter III.

4 -33/2 0) du W2 2

(xyz) - exp(i u+i 3L
on0u' a

u 2

drr

-u T • exp (i -•) +y

-oou

Sexp(i 2 u+i 4u 7-0 r x

2 oc
exp Ui -r-T e 5t(z'-vt) dzldt (5.54)
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and

VxE (4 ) zxVE (4 ) (556)
iW0 iL(5

It will be more convenient here to work with B rather than E. Bx
(4)(4and By will involve dE4 E4

ao y and -T and the taking of these derivatives

will enable us to do the c-integral and also the u-integral.

- i a E (4) 2iy a E(4)Bx co- d y =-. (5.57)

and a similar expression for B with y replaced by -x. The only rT

dependence in E is contained in the r-integral.

2 u rT r 2 r ) 1
2 f exp(i )T- - +Lexp(i -T-- - exp(-i T4)

brT2 U/y rT T

(5.58)

Denoting the u-integral by I(u) , it becomes

00 r2 r 2 ) - Fx~ 2 _r 2
I(u) o du exp(i CL(z24 ) L+420 u-1/2 ax~ 2 W0) I(exp [i 1 -4ep 4u J

(5.59)

By making the substitution u = 1/x, each of these integrals can be
put in the form

oo dx A2B2
f x/ exp(i T-x) exp(i 7-) whose solution is

T expB(iAB)
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Therefore

T (ZZ)z2) 2 2 2
i(u) :(-expz(i +rT) exp(i y

a a T a
a

(5.60)

Then, from Equations (5.60),(5.57) and (5.55)

00

Bo v_ a a 2  0 iOtdt CACt) 2 22x 4 q r e dt exp(i a

ro T 2Wa2 2 0

- exp(i a (z-vt) -rT y) (5.61)

We now assume that the external current is localized within the
2t2 2 2

Alfven cone, i.e., vt K z -rT .Then

exp(i a +rT 2)-.,exp(i z2+rT2) exp(-i vtz
a •;2+rT2

(5.62)

and

S (z-vt)2  2z2_) T2 vtz

expi a zt rT . exp(i a T exp(-i a 2

z _ r.,r'

(5.63)

Performing the t-integral, we obtain
ýoq _y_ 03 a2 z -ep 3

-o v-l -expi aýrj 6(r2 - a 2 az2 exp(i airl) a(0-0 a )
rT

b(W-W v (5.64)
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where again Irl - (z 2 +rT 2 )1/2

(z2  21/2and I (z2rT 2y)2

The leading term remaining in each expression after taking two
derivatives is just the original expression multiplied by the factor

-2 z2 W2 z 2

- 1 - for the term involving r and - - 2 - for the term involving r.
2 2 2~a r a r

We are interested in the radiation part of the field and hence keep only

those terms that exhibit a 1/r dependence.

Therefore

Uoq q, _Yr rz2 z z z2o-

x 2 a r exp(i 2a I2) av a ) r 2 exp(i alrn)

r r

b (0-< a7) (5.65)

In order to see the angular dependence of the field, let us convert

to spherical coordinates, r, 0 9 .

The 6-function appearing in the first term can be written

-W v- ) b (cos 0 -v)vA- (5.66)

Ia T T v vWi

jand the other b-function can be cast into the form

6 5 ( 0- W V ,1,TcS -0 ) v 2 / a 2

a v 2 2 3/2
1( 

a+,- (1+y-v /a (.7

(5.67)
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making use of the relation

6 (x-xo)~5(f(x)) =C>

0

where f(x 0 0.

Then, making use of Equations (5.66) and (5.67) in (5.65)

[r ~ osa
uoq sin 1 exp(i Irl)(cos - )

B __ sin__ a v
x 2 Vv2- a 2  r v2/a2

exp (i Ir) ' Gos -A + 2
-- a expi2 a2 1'-1/a (5.68)

a/v (l+y-v2/a2

The two terms in this expression are mutually exclusive. If one

contributes to the magnetic field, the other does not. The first term

contributes only for v/a > 1, since the argument of the s-function

vanislhes when cos Q :: a/v. However, the second term contributes when

v/a < 1 as is easily seen from examining its b-function. Thus, the

first expression, resulting from the exp(i w/aIrl) term in G4 1 is

analogous to the normal Cerenkov effect. The magnetic field is con-

tamed in a cone of angle 9 tan v2- a and occurs only when
a

the particle velocity is greater than the phase velocity, The second

term leads to a strikingly new effect which we shall henceforth call

the anomalous Cerenkov Effect. Here the radiation field is contained

within a cone of angle

', = tan-
1  (1-v2 a 

) 1/2

Y

and occurs only if the particle velocity is less than the phase

velocity. The highly anisotropic plasma is capable of sustaining
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a radiation field regardless of the velocity of the moving charged

* particle, whereas normal Cerenkov radiation is possible in an isotropic
medium only when the moving charge traverses the medium at speeds

greater than the phase velocity of light in the medium, Moreover, note
that the cone accompanying the anomalous Cerenkov radiation always lies
within the Alfven cone and coincides with it in the limit of v/a--.i0.

Mathematically, this is a consequence of the fact that this new effect

arose from the conical waveguide term exp(i a 1rl ) appearing in G4 . Pre-
viously, this term did not appear because of our inability to treat the

Alfven cone properly. Its physical manifestation is of unknown origin.
The overall factor of y-1/ 2 multiplying this term partially explains

-i
the fact that such radiation has never been detected. For w = 10sec
the amplitude of the magnetic field associated with the anomalous effect
is 10,000 times smaller than the field giving rise to the normal Cerenkov

radiation

However, it is evident that our treatment of the problem is not

adequate for very small angles. Note that as Q-'-0, each term becomes

arbitrarily large as v approaches a form above and below, respectively.
This results because each term is proportional to csc Q which in each

1
case is dependent on the quantity 1 . As will be shown shortly.

the expression for the electric field E will also have two terms
which are both independent of sin 0 and therefore finite as Q--+0.
However, the product of E and B, in the Poynting vector, will result

in a finite, nonzero total power for 0 = 0. But, we expect zero

power as we look along the path of the moving charge because there
is no transverse direction. Moreover, the Green's Function G4 is
known exactly for the case of 0 = 0 (rT = 0). Thus, we can calculate

the exact expressions for the electric and magnetic fields, and check

that the power really is zero.

exp(I 1-a (z-z')
G4(r = 0) = - 1-- In y (5.69)4a 8 Q! l+y

a

I
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E(4) (rT 0)=o • G4 (z-z') exp(i v z dz'
v

-•o exp(i ý z) . (5 70)

4( v a av

which is not a radiation field since it does not exhibit the classical

l/r behavior, but rather more like a plane wave solution. The magnetic

field for small angles can be obtained by returning to Equation (5,61)

and expanding expai ý!rI) - exp(i 1Ir[) in a Taylor series about small rT.
a a T

Then

Bo _12 exp (i Irz-vt [)

Bx- 4 y Co yz 2 a (Y+l)
47_ 0 

(5.71)

which goes to zero as y ---> 0. Likewise, By which is proportional to

x also vanishes in this limit. The magnetic field thus vanishes for
Q , 0 because when treated correccly, the two terms contribute together

and oppose each other. In Equation (5.65) the two terms cannot cancel

each other, even in the limit of Q ->0, because they do not exist

simultaneously, i.e. , the existence of one precludes the existence of

the other. Yet, when the problem is treated properly for small rT,

we see that the two terms contribute together and the net result is

zero. This is to be expected since when rT7. 0, r -" r - z and the

two terms are identical. The inconsistency present here is a consequence

of our inability to treat the isotropic propagator exp(i O-Ir) when
a

ýri is inride the Alfven cone and Q is near zero. The mechanism that

prevents the field calculated in Equation (5.67) from growing arbi-

trarily large comes into play when the Q given by 9 c tan-1 :2

a
lies within the Alfven cone. For it must be noted that even though

the medium behaves as a conical waveguide, there is nothing in the

normal Cerenkov term to denote our passing from the damping region
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outside of this cone to the region of propagation inside. We would

expect, if the calculation were performed correctly, that the normal

Cerenkov term would exhibit a change in character, as 0 is decreased
to lie within Qa. Bearing in mind the fact that the magnetic field

vanishes for 0 = 0 in view of the exact calculation and the heuristic
arguments given above, we can use Equation (5.67) to describe the

field at all points off the magnetic field axis. Since for ELF waves

0a is of the order of 10-4 radians, the normal Cerenkov term is correct
down to the smallest angles. In addition, since the radiation accom-
panying the anomalous effect is contained within the Alfven cone, this

radiation would appear to be concentrated in infinitesimally thin tubes

centered about the magnetic field lines.

In order to determine the electric field E(4) we use still
another integral representation of G4 . In Chap. III, we developed

2
an expression for G4 involving an integral over rT

2rT 2

G((z-zi) (= f) 8 1 T d(u 2 ) exp(i a)4+ 8TW o u2 a ý(z-z ') +u2

a

22)] ~exp(i qllz-ztI) ln
-exp i a z. Iu2 a8wln

a
(5.72)

E(4) _io•ý+i i02

--•-- vqa G f G )eit(z,-vt)dzdt

z

2

rT do(u 2  0 eo tdt

-- S-q 2 eiwtdt [exp (zavt)2+u20 u -o

-exp. (i (z-vt) 22)1 +EO (5.73)
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where Eo(4) is the value of the electric field for 0 or rT = 0

S(4) 'o o0a2 b(i aE - 4 2 - v) exp(i a) (5.74)
v

Again we assume that the source is localized within the Alfven

cone, i.e.,

v2t2 << z 2 _ u2

and expand the exponentials as before. This leads to

2
[(4) t'oV A aq 2 rT

E -4v aqz d(u2) Fexp(i i
2i 0 u ~ 7

E(4)A

-exp(i a ( ao(-•0 r )j+ Eo( 4 ) (5.75)

In order to perform the remaining integrals, we write the

6-functions in the form b(u 2-u2)

222 2 V2z2

(W-CO~~ ~ ~ -V21)2KL (.6

a 2 a I a2w

Y z 2 v 2vz (577)
z 2_ u2a

From the previous calculation of the magnetic field, we know
that the first b-function contributes only when v is greater than
a, and the latter only when v < a. Furthermore, the value of rT 2

in the limits of the integration must be large enough in each case
so that the point where the 6-function is nonzero lies within the
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limits of the integral. Then

4 aq a a -1

H~rTv - -I
(5.72

a

2 E1 -Z, _• ) (5.78)

where

H(rT2 -z2_(V - )) =1 (5.79)
a

for

rT 2 > (--- 2 (5.80)

a

and zero otherwise, etc. In taking two z-derivatives of the quantity

in the brackets, we keep only those terms that 'have the 1/r dependence

required for a radiation field. The terms of interest are the cross
terms obtained by differentiating once both the exponentials and the

H-functions. The derivative of an H function gives a b-function of

similar argument, i.e.,

aH - T a 2 ) -2z rT2_ Z2(-- 1 2 1)

1!
(5.81)

a-- i alZI) - i ( z sgn z (5.82)
za a a a
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where sgn z denotes the sign of z.

Furthermore,

r2 ,x 1)1 Y1 ý L_ K_) =.L_ ~(1 a 2 (cos g_
rT a 2  r r 2  a 2 r 2 2r 2a r 2vr2

(5.83)

yc2os - ~)2 ýyV 2/a2 / (5.84)

Note that the b-functions appearing here, when written in spherical

coordinates are the same b-functions contained in the expression for

the magnetic field.

Thus, taking the appropriate derivatives and rearranging the

resultant s-functions and converting entirely to spherical coordinates

leads to

(4 ovL A

a

(4)A (.5+E z (.5

Again both the analogue to the normal Cerenkov effect and the

anomalous Cerenkov term are present in this expression. However,

unlike the result derived earlier for the magnetic field, the elec-

tric field does not become arbitrarily large as v --> a from above

and/or below but merely approaches a finite value. If Equation (5.85)

were entirely correct, the field would approach the value E (4 ) (0),
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but, as can be easily seen, the terms involving the b-functions do

not vanish as v -> a. As a consequence to the fact that E(4) does

not reduce to its true value as rT = 0, the total power will not

vanish for this same case, but instead approaches some constant value.

Actually, the electric field at rT = 0 is not a radiation field but

a plane wave solution of the form exp(i a 1zI) and hence should not

contribute to the total power. The b-functions terms in Equation (5.85)

keep their 1/r dependence even in the limit of rT --> 0. The reason

for this discrepancy, as stated above, is not known, and is contained

in the mathematics. If the electric field depended on sin 0, the termi a2

1 - a would appear in the numerator, and the rT= 0 value (v = a)
v

of the field would then reduce to its true plane wave value.

In computing the total power, we shall treat the two effects sep-

arately.

1. ANALOGUE TO NORMAL CERENKOV EFFECT - v > a.

The fields contributing to this effect are obtained from equations

(5.85) and (5.68)

(4) 3 exp(i aIrl) a
E (4 _2 q• ar b(cos 9 - v) (5.86)

4o a 2 ira v)

• B - 2 v ~exp I r I C-2a (sin ••-cs••

(5.87)

Then S E x B*

ýL2 q2 2 5 (cos g a)

a

0  v b(cos 0 -a (cos + sin Y")
- 8 12 v22 v

S-a(5.88)

Again, one of the b-functions is identified with T, the overall

time that the source is on.
8]
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27T b (0) = CT (5.89)

The total energy radiated per unit frequency is given by

2r
dIO -= 2r A.S d(cos Q)dO (5.90)

and the rate of radiation is just the above expression divided by T.

The total power radiated by the moving point charge is then

obtained by integrating over all solid angles and over the frequency

2

R d(cos 0) 5d dC ý0q v b(cos 0 - a) sin Q

v a

2 °7vq d% (5.91)

- 4

The integral being over those frequencies in the ELF range for which

v > a (v) .

Both the total power and the power per unit solid angle are
2 2

independent of the factor v -a and furthermore are constant for a

given v.

The normal Cerenkov radiation, as given by Equation (4-32) is

R = Tr~oq2 j dvv v -a (0 (5.92)
c 0 TvT

which for the case of v >> a, reduces to the expression obtained

for the present case (except for a factor of four.)

This result is not too surprising. Our expressions for the

fields are most correct in the region far outside of the Alfven

cone, where the particle velocity is much greater than the phase

velocity. Obviously, the above expression for the total power,

Equation (5.91), does not go to zero as v --ý>a, but approaches a

finite constant value. One can conjecture that a factor of

82



S-2023-1

v 2_a 2 in the numerator would suffice to yield an expression compatible

with the 0 = 0, v ---> a, case, but there would still be no reference made

to the existence of the Alfven cone. In fact, because of the nature of

the Alfven cone, one should expect the radiation to be enhanced as the

Cerenkov cone first coincides with the former. The radiation should

then reach a peak for some value of 0 C < 9 a9 and then decrease to zero

at 9 = 0. The mathematical mechanism that does this is absent from

the expression for the magnetic field. When the ratio of a/v is such

that the two cones coincide, the magnetic field, as given by Equation

(5.65) is Vy- times as great as its value for large v ff >> 1). Thisa
represents a large buildup of the field strength. However, as we

approach 9C = 0, this expression becomes infinite instead of cutting

off at some value of 9 C at inside the Alfven cone. A summary of these

results will be presented at the conclusion of this chapter.

2. THE ANOMALOUS CERENKOV EFFECT

Looking now at the fields produced by the anomalous effect, the

terms of interest are

ýt q v exp(i ý21-rl)
B 6 os 9 X-Cos-aTr7 ' (l+ y-V /a (C +Yv /a2 (sin

and ýL 4 exp (i ý2 IF I (Cos 0-

(4) 0 V A a
E 3 qz 2 (5.94)

2
a

where now v < a. This effect does not occur when a uniformly moving

charged particle traverses an isotropic medium. The accompanying

Poynting vector is

il 0 q v 5 6 (Cos 0 - b) LIT A A
S 2 (COS J6 x + sin

8 4 2 2 2TT y

a v a r (l+Y-V 2 /a 2

5.95)
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where again one of the 5 -functions has been associated with the time

T and

bY

1 + y -v2 /a2

Then

2 r2 dw
R -0o T In.S d(cos 0) d6 2

2
-u0q Ir v4' y•- J vd• (5 96

4 4 5/2
a 0,') (1, -v'//a•)

gives the radiation over all frequencies in the ELF range for which

v < a(v). Note that for all extensive purposes, this expression is

proportional to 1/y2 and thus is a very small quantity compared to

the ordinary Cerenkov result. (y = 108 for W = 10 sec- 1 ) Thus the

radiation for all values of v < a is contained in the surface of a

cone of angle 81cel-' 4 radians and is of very low intensity. Forcv/a l, the radiation from a single charged particle for all ELF

frequencies up to 100 cps is of the order of 10-56 watts. Even a

beam of particles, each contributing collectively, would not raise

this contribution to a value that could be detected above the back-

ground noise. In fact, it is highly doubtful whether either the

radiation or the associated magnetic field could be detected by any

conventional means, assuming such an attempt was made.

SUMMARY OF RESULTS

A uniformly moving charged particle, traversing the ionosphere

in the direction of the lines of force of the earth's geomagnetic

field, produces low intensity radiation at ELF frequencies. If

the particle velocity is greater than the phase velocity, the

radiation is contained in the surface of a cone of angle Qc= cos (a/v).
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For large values of v/a, the radiation and the associated fields are
nearly identical with those produced by the normal Cerenkov effect
which is observed in isotropic media. As v approaches a from above,

- the magnetic field builds up to very large values and reaches a max-
imum for some value of a <' " Because of improper treatment ofv y+l

the problem, the expression derived for the magnetic field becomes
arbitrarily large as v -> a and the radiation remains finite and non-
zero, whereas it should vanish because of the symmetry of the problem.
The part of the electric field that contributes to the total power lies
wholly in the magnetic field direction and the direction of the Poynting

vector is such that it cannot represent the radiation from a transverse
wave. In the normal Cerenkov effect, the wave is transverse in char-
acter and the associated electric field is not restricted to the direc-

tion of the external magnetic field.

Because the ionospheric plasma behaves much like a conical wave-

guide, radiation of much lower intensity is produced even when the
particle velocity is less than the phase velocity. This latter effect
does not arise when the particle traverses an isotropic medium. The
radiation is contained within the surface of a cone of very small angle
which under no circumstances lies outside of the Alfven cone of angle

0 = tan- i_ Again the expressions for the magnetic field and the

total power are incorrect as v approaches a, this time from below. The
intensity of this effect is so low as to render it undetectable by

conventional means.

The approximations used in arriving at these results were:

a) collisions were neglected

b) plasma considered at zero-temperature

c) ELF approximation--wave frequencies less than the ion cyclotron
frequency

r d) source localized within the Alfven cone.
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CHAPTER VI

FINITE TEMPERATURE

The inclusion of finite temperature leads to further modification

of the electric susceptibility tensor which in turn leads to temperature

dependent Landau or "thermal" damping of the ELF modes previously discuss(

It has been shown (3) that the pure!- thermal effects of collisions are

important in the F-layer where the temperature of the electron gas,

T(°K) is equal to or greater than 2 x 10-12 a 2 (c.g.s), where a is the

Alfven or phase velocity for MHD waves propagating in the medium. For

the zero-temperature case, the various diffusion coefficients (one for

each species) appearing in the Fokker-Planck operator were set equal

to zero. With the existence of finite temperatures, the ratio appears

both in the kinetic Green's function and the ensuing susceptibilities.

THE ELECTRIC SUSCEPTIBILITY TENSOR

In the report of Cantor, Keilson and Schneider, (3) the temperature-

dependent conductivity tensor was derived using the Fokker-Planck

Equation as a starting point. We refer to that report for details.

The result of interest is

2 iT dTeiTe- -kB'k dT - •A.kk'A] (6-1)

0

where A and B are matrices with nonzero components (neglecting collisioni

A =Tzz

A A sin 2TAxx yy

A -A 1-cos 2T
xy yx
B B 1-cos QT (6-2)

xx yy Q2
2

Bzz 2
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The conductivity tensor is related to the susceptibility tensor
A
X defined by

A
S iW a(6-3)

0

which appears explicitly in the matrix equation relating the electric

field to the external current(Equation (2-27)).

Then

2 00

X i -P Te - LAokk.A (6-4)

0

dA and A-kk'A, which appear in the integrand, are both matrices.

COS2T sin ~2T 0>
dA= -sin QT cos QT 0 (6-5)

TT 0 0 1j

Aokk.A = Q (6-6)

sin2 T k2 (1-cos 21T) 2 2(6-7)
xx 2 x 2 y

sin 2T k 2  (1-cos QT) 2 2(6-8)
yy - 2 y 02 x

Qzz = T2kz2 (6-9)

SsinQT(l-cosQT) k k -

kxy .-2 + -2 Lsin2QT + (1- JosQT)2 (6-10)

2 sinQT(l-cosQT) kxk
k T -2k2 Isin2 2T + (l-cosQTi2 (6-11)

xz = T[kx sinQT + ky (l-cosQT) (6-12)
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kzT- kx sinQT - k (l-cosOT) (6-13)
zx x y

kzT
Qyz = - ky sinsQT - kx(l-cos2T) (6-14)

kzTazy = k y sinQT + kx (1-cosQT) (6-15)

First let us consider the case of zero external magnetic field.
In the absence of both r and 0, the matrices B and A are diagonal and

isotropic

B = T 1 : A T 1 (6-16)

Then
•2 00

X = i I dT exp (-iwT) exp(- i2 kT) [ -2T 2 k k]
CO 02

(6-17)

The next step in evaluating this integral is to go to the "low
temperature" limit. The low-temperature limit is dictated by the
electron and ion temperatures prevalent in the ionosphere(> 10000K)
and is consistent with the low frequency limit under which we are

laboring. In order to expand exp (_-2 k 2 T2 ) in a power series and2 i
neglect all terms after the second, the inequality

Sk2T2 << 1 (6-18)

must hold. But T is a proper time and is inversely proportional to
0•, the only frequency occurring in the integrand. Further, jt = D

is just the square of the thermal velocity, vth.

Therefore, each species must satisfy

27T (6-19)
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where n - is the wavelength of the ELF oscillation having angular

frequency w.

The thermal velocities for 02+ ions and electrons are 1"3 x 105

and 3 x 107 cm/sec3 respectively assuming a temperature of 1000°K in
the F-region. Even in the exosphere, with a temperature of possibly

3000 0 K. the thermal velocity of electrons does not exceed 5 x 107 cm/sec.
Therefore, in order for the inequality to be satisfied, the wavelengths

7 -1must be greater than 10 cm, for a wave with frequency W = 30 sec-
However, ELF magnetohydrodynamic waves of this frequency, traversing

the exosphere at the Alfven velocity of 5 x 108 cm/sec0 do indeed have
wavelengths of hundreds of kilometers and hence the two approximations

of low-temperature and low frequency are consistent. For the low
temperature limit actually places a restriction on the wave number,
k, which in turn leads to long wavelengths which are consistent with
the additional assumption of extra-low frequencies. Let us speak of

frequencies below 30 sec-I as lying in the ultra-low frequency or
ULF' band. Therefore, from Equation (3-38), after expanding the ex-
ponential and performing the T-integrals:

_W 2 W2

X __- 1 - k 2kk) (6-20)

As was mentioned previously, possible modes of radiation are
closely related to the normal modes and an investigation of the
dispersion relation governing the latter can yield valuable infor-
mation concerning the former. The radiation-like denominators
appearing in the various Green"s Functions already discussed are,
when set equal to zero, nothing more than the dispersion relations

governing the normal modes,

The matrix equation involving the electric field is again

I~2 Co2  Co2 A1

(k - w) 1- k k - "2 X E = 0 for the normal modes

(6-21)
Define two scalar quantities by

S 2 (2 C2 )S - V 2-2 -wk 2  (6-22)

c Oc cC
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and

2w2

Ul 22 (6-23)
cC'

Then, Equation (6-21) can be rewritten in terms of these two scalars

(Si - U k k) E = 0 (6-24)

The necessary and sufficient condition for the existence of nontrivial
solutions is that the determinant of coefficients vanish. Therefore

det (Sl - U k k ) 0 (6-25)

and some simple algebra leads to

det (SI -Uk k ) s2 (S-Uk2) (6-26)

Hence

S2 = 0 (6-27)

and

S - Uk2 = 0 (6-28)

The double mode is given by

2 2 WA 2 k 2 2
2 - -2  L0 (6-29)

c 2 c 2 A -w c2

or solving for k in terms of Cw in the limit of the ULF approximation,

* 2 co)k + - = 0 (6-30)
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which is analogous to the damped mode described by the Yukawa potential

which was previously discussed. The third mode is given by

2 2 oo2 2
S -uk 2 =3 -2 2 k 2 + _W = 0 (6-31)

and the resultant dispersion relation is

k2 + 3 w2 = 0 (6-32)

which again represents an isotropic damped wave. Therefore, the case

of low temperature, in the limit ýk2 << , 2, with the absence of an

external magnetic field results in two independent modes both of which

are isotropically damped. The damping is frequency dependent and

depends on the thermal velocity vth = 1/2= 1 cm/sec.

Returning to the excitation problem, the two Green's Functions

for the low-temperature, zero-magnetic field case are

d3 kik-r
d~k eik

(2Tr) 3 2 22
k2 (i+ -P- ýL)+ -P

02 2 c c

(6-33)

-exp - 0P [rI/c

- ( r {2 32 1/2+ P- - + -P.•
W 2 c 2 2 c• 2

and

H2 - 4 ( exp ( irr/c (6-34)
2 41rIrI 2+32 K 7 7 2)

1 + 3 -R + 3 9-2 2
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But

2 2_J Vth 8i
2 2  '108 for c• = 10 sec 1

Therefore

1 exp exp (
HI 41-ri and H2 3•24 Irlt (6-35)

ar1 2H7 r12 2  47T1r I

2 c2 W2 c2

as constrasted to the zero-temperature case

G2  ex(i2-f (6- 36)
G2 "• 47, I r I

The damping in the latter case is much greater than the thermal

damping occurring when finite temperatures are included. However, the
new Green's Functions have a constant factor of 10-8 multiplying them,
which is absent from G2 . Thus, the inclusion of low temperature results

in a greater damping distance but the amplitude of the initial oscillatic

is greatly depressed, and the wave velocity is greatly reduced.

LOW TEMPERATUREFINITE MAGNETIC FIELD

We now consider the case of a finite, external magnetic field,
B., whose magnitude is contained in the ion and electron gyrofrequencies

+

Most ELF magnetohydrodynamic waves that have been detected at the
earth have been observed to propagate along the lines of the earth's

general magnetic field. The magnetic field direction, has a low-
frequency conductivity much greater than that in any other direction

and serves almost as a waveguide. For every possible ELF wave here-
tofore discussed, excluding the isotropic mode, the propagation is

in the magnetic field direction. Since one-dimensional propagation
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along the field lines seems to be the recurrent and dominant physical

phenomenon, we shall limit the ensuing discussion to this particular

case of interest by imposing the condition

A (6-37)

on the propagation vector.

This greatly simplifies the calculations for the matrix Q = A.kkA.,

now has only one nonvanishing component,

Qzz = T2kz2 (6-38)

as can be seen directly from Equations (6-5)-(6-15). The nonvanishing

components of the special susceptibility tensor, X, are then given by

2 002k 2T 2

Z-i --P I dTe T e (l-tkz2T2 (6-39)

0

200 2 T2

Xxx -X dT e cos •T (6-40)
0

200 2 T2
= - __p__ d~ iwT - z 2

Xxy yx dTe e sin Q T (6-41)
0

It will be shown shortly that each of the above integrals can

be explicitly written in terms of its real and imaginary parts, and

that in each case, one of these parts can be evaluated exactly whereas

the low-temerature and/or low frequency approximations discussed above

must be invoked to effect the other solution.

For example, the z-z component may be rewritten:
W 2._ 00• jkz2 T2

A zD cc2 2  2 2
X = dTe (-sin CDT + i cos COT) (l-kz T2)

0
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2 
2 0

1 + -)2 dTe (-sin WT+ i cos WT)

W (6-42)

The imaginary part of this expression is easily evaluated

CO 2 T2  [ - 2
COS CTe-bkz 2 dT dTe T 2/2 (ei&)T+ e-iWT

o4
0 0

Sexp- 1/ (6-43)

Therefore from Equation (6-42)

S 2a2  -k z2T2/2
-=k+ z 2 2 W sin 0T e dT + icop

(kz2)-3/2 exp ! 22 (6-44)

To evaluate the real part, we go to the low-temperature approximation

2 2
tk z2T << 1

2Trvth
which puts a restriction on the wavelength X > (for each species),

as discussed previously. The exponential can then be expanded in a

power series

, 2 2T2)z
R = z ( + j dT sin WT

0

.-;2Z) (6-45)
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This is precisely the zero temperature result for Xzz. Thus, the
presence of a finite temperature serves to make X a complex quantity

A
whose imaginary part is wave-number dependent. The evaluation of X

A
and Xzz follow similar lines

A 00 2~ 22X o P -d k2T [sin (2-W0)T-sin (Oi+0) T
^ _ f dTe TXxx 2W 1

+ i(cos(0-6o)T + cos (Q+6)T)] (6-46)

Again the imaginary part can be determined exactly. Making use of our

previous result
00 b 2

-T 112 a 2)
Jcos aTe -- b exp ( ) (6-47)

0

ID2-/2 F" __ 2+)
ImXx= W ([ik2) -2 2ýtkz 2 J + exp 2Lkz2  j

(6-48)

In the limit of extra low frequencies, W << 2 < W0 . ThisP
expression reduces to

[ 2 22

mxL _R • -1/2= (ELF (-kz2) exp 2 (6-49)

To evaluate the real part, we make use of the low frequency approximation
to expand sin (Q-0)T and sin (Q+w0)T in powers of coT about W0 = 0.

sin(Q+60)T = sinQT+60T cos 2 T + ... (6-50)

sin(Q-60)T = sinQT-c0T cos 2 T + ... (6-51)

Then, from Equation (6-46)
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ReaX = _ 2 I dTe-T cos 2 Txx P 0

2 s dT -!ý- (Ke Z Cos 2TLk z 0o d

(6-52)

and integrating by parts F ]
- D 2 K fdT sinQTe -1 (6-53)

ýLk1kz 0

Again, going to the low temperature limit, we assume kz <<2

which is again compatible with our low-frequency assumption in that it2 7lvth
puts a less stringent condition on the wavelength, namely X > --n-
or X > 10 4 cm (for ions) which is certainly satisfied by any extra-low

frequency magnetohydrodynamic disturbance propagating at the Alfven

velocity. Then

2 00
R------ A 5 2e l Xxx ýk 2 dT sin T1n-±.z kirz T , -1

W 2

2 (6-54)

The real part of X can be determined exactly. From Equation (6-41)
xy

2 002 k2 T2/2

Re -Rc=~ jd e cos(O-W)T - cos(Q+co)T
x-R y =-2-w dTe Ios TI

(6-55)
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and in the ELF approximation

W2 2
A PRe X xy(ELF) = + ([tk 2 exp (6-56)

z 2ýLk z

2 00
IM A xy 2 2ý2 -W)T

Xxy dT exp(-ýLk z T sin(Q+w)T+ sin(Qxy
0

(6-57)

Again we expand sin(Q-W)T and sin(Q+W)T

2 00

IM A 
2 2/2X y dT exp(-ýLk z T sinQTx

0

In the limit of low temperature and low frequency the inequality

ýLk z 2 << Q 2 is satisfied and hence

2 00
A 2 2/2

Im, X XY dT sinQTU-ýLk z T

0

2

+ 03w (6-58)

The first term vanishes when summed over the two species because of

the condition of charge neutrality in the plasma. Therefore

A 
ýtk z 2 W 2

Im[ X XY = Q1W (6-59)

Thus, in the low-temperature, low-frequency limit, the electric

susceptibility tensor is given by

W2 W 2 W
_R + i ID E exp (6-60)zz W 2 (jAz 2 ) 3/2 FE2
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ID+i_ L ý exp,
Xx yy 2  Wa2 z exp 2)k2)

(6-61)

A A ( 2 e x 2 W,
iXxy yx 2 (z23/2 exp 2 0 3w

yx (6-62)

It should be noted that the exponential term in each of these

three expressions is a very small quantity because of the low-temperature
"approximation

2 k o2 ,22ILk z << W

AIn the zero-temperature case in the absence of collisions, Xxx
and Xzz were both real and wave-number independent, and Xy vanished.

From the structure of the above expressions, one can easily see that
A

the dependence of X(k&w) on k is entirely contained in the temperature
dependence as was previously stated.

Again, we shall first obtain the dispersion relations from the

normal modes and then construct the temperature-dependent Green's
Functions.

The normal mode equation is again

Lk - i), - kz - w X] E = 0
Z" 2

The vanishing of the determinant of the coefficients leads to

"2 ( 2 : 2 +7 ( L:x)2W ) [k c02(lX ))(½X~ 0

S2(6-63)

The resultant modes are then given by the dispersion relations
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A

A1 (6-64)(l+Xzz) = 0 (-4

2 2 (6-65)
kz -- 2 (l+Xxx_+ i Xxy) = 0

The first of these equations represents a longitudinal oscillation

similar to the plasma oscillation occurring in the zero-temperature

plasma.

We shall restrict our attention to the two modes given by Equation

(6-65) and attempt to determine the criteria for thermal damping

A 2 2 2

X +iX -2 +-+Xxx -- xy •2 23OO

+ eFT exp + 1_
2p;k z2 (htkz2 3/2 -+

In the limit of low temperatures and low frequencies

2 o2 Q2ik z 2<< W2<< 2

Therefore

A A W2 22O
X + i X = P + + i exp

xx- 2 3 -- 22  2 k2) 3/2

(6-66)

This expression is actually a sum over the two species, but

the values of• ,wp and ý2 in both the F-region and the exosphere are

such that the ion terms predominate. Typical values of these para-

meters in both regions are listed below in Table 1.
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F-Reg ion 
Exosphere 

S-2023-

W p_ 1.2 x 108 sec-I 1.0 x 105 sec-I

W 7.0 x 105 sec- 7.0 x 102 sec-I

2- 1.0 x 107 sec-I 1.0 x 10 5 sec- 1

3.0 x 102 sec- 3.0 sec-1

2.5 x 10 1 5 cm2 /sec2 5.0 x 1015 cm2/sec2

jL+ 1.0 x 1011 cm2/sec 2  1.0 x 1011 cm2/sec 2

a (Alfven 1.0 x 107 cm/sec 1.0 x 108 cm/secf-- velocity

T(kinetic temp)1000 K 3000°K

Henceforth, the quantities W0, , and ýi appearing in the dispersion

relation shall be the ionic contributions only.

k2 (A.02
k 2 w-2 (I+ Xx + i Xy)-

z 2 xx- xyc
(6-67)

2 2 ýk2 2 W2 W22

k2 c+2 ( +z2 3/2 expz c2 c 2 3- 23 c 2  2

"If we neglect the imaginary part of Equation (6-68) then to a first

approximation

2 62/2

kz 1 (6-68)

a 2Q
a

Since in the ELF limit wA << Q2 the denominator can be expanded

to obtain

2 W2
Z 2 -2 (6-69)

a ( al

"• ~10:
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As•L2 -42
2 - is of the order of 10- 4, k2 is nearly equal to w2 in

a athe first approximation. One can therefore obtain the next higher
approximation by replacing k2 everywhere in the imaginary part of

z
Equation (6-70) by (02 Therefore

2
a

2
2 W2 - w2  4p ( 2a2
z 2 + 3/2 exp - (6-71)

a c c )

a

and

5 2 (2 2
- J (-(6-72)kz C2 3/2- a exp 2)

It can easily be seen from this last equation that for w < 104 sec-I

the exponential dominates the damping term and tends toward zero. Thus
for any frequencies in the ultra-low frequency (ULF) range for which

the low temperature and low frequency approximations are satisfied,
the damping distance becomes very great, and the low-temperature
thermal damping is negligible. Only for angular frequencies of 104

and greater does the imaginary part of the wave vector, as given by

Equation (6-72) become the order of the real part. Hence, the effects
of low-temperature thermal damping may be neglected for ultra-low

frequency one-dimensional propagation along the magnetic field lines.

The other mode contained in Equation (6-63) is analogous to the

longitudinal plasma oscillation resulting in the zero temperature
w 2

case 1 - ---- - 0.

A
Now, in the low-temperature limit, Xzz is wave-number dependent,

and the plasma oscillation is replaced by
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IT_

i _ 6102 + P060 _ expl o IS22-
Sl6-2 2 3/ 2

+ (itk- ) -/ 2 )z O(6-73)

" 2 2

o (1-q x exp (- 0W 2 2 2(6-74)

with

" 2 _ __2

X - 2 (6-75)

Then,

23 -- •

x 3 e 22(6-76)

Assume a solution of the form x Ai

2/2 _ 2
-A 3i e A T-

Therefore, solving for A by trial and error, we find

A .95

Thus

thtx CO k .95 i
Vthkz

kz= 1.05 i (6-77)V th

This longitudinal mode represents a damped oscillation with a
j. damping distance of 100 meters, travelling at the ion thermal velocity.

Thus for the case of one-dimensional propagation along the field lines,
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the zero-temperature Alfven mode kz = is unchanged by the inclusiona
of temperature in the ULF limit, whereas the longitudinal plasma

oscillation transcends to a damped oscillation. Again, the most im-

portant feature of the above discussion is that the one-dimensional

magnetohydrodynamic wave propagating at the Alfven velocity is unaffected,

in the ULF limit-, t' .Et presence of a finite temperature.
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CHAPTER VII

A MANY-BODY DERIVATION OF THE BOLTZMANN EQUATION
FOR HARD-SPHERE MOLECULES

The distribution functions f1  f2 f3 are connected by a

chain of equations which describe in an obvious way the motion of

one or two or three "typical particles" in the system relative to
the rest of the system. The first two equations in this chain have

the form

at + F (r-r' f 2 (rvr'vlt) = 0a+ v V + a • V) f + m v -

r' v'

(7-1)

and

(- + v • V + v' V' + a V + a' • Vv, + -i F(r-r') V + m F(r'-r) "Vat V v' M v m

x f 2 (rvrlvt) + 1 (F(r-r'') • Vv + F(r'-r'') 7
r'm v'

x f 3(rvr'v'r''v''t) = 0 (7-2)

The operator on f in Equation (7-1) describes the motion of a single

particle under the influence only of an external force. The opera-
2tor on f in Equation (7-2) describes the motion of two particles

moving under the combined influence of the external force and the

interparticle force. The integrated force terms are due to the com-
bined average influence of more or less "near" particles, and is

less significant at low densities than high. The reason that a
knowledge of a high degree of correlation is needed in these terms

is that the distribution of "near" particles is not unrelated to

the same force which is being taken account of. 105
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Our intuition tells us that a large class of problems ought

to be solvable using only Equation (7-1) and some simple assumption
f2about f2. Likewise another large class of problems, very likely

encompassing the first class, ought to require no more than
3Equations (7-1) and (7-2) and some simple assumption about f

Indeed the "self-consistent force" approximation, and the "Boltz-

mann collision hypothesis" are the direct expression of this in-
tuition. We will proceed on the basis of a slightly different

philosophy which has, in practice, no more or less valid basis
than the aforementioned ideas, but has certain obvious mathematical
extensions. This is the idea of successive noncorrelations.

When no internal forces act (we use a subscript zero to indi-

cate this case) , there can be no correlations among the particle

motions. Either by inspection or intuitively it follows, for ex-

ample, that

f 2 (rvr'v't) = fo(rvt) x f (r'v't) (7-3)
0 0 0

What information does the nontrivial function

f 2 (rv,r'v't) = f(rvt)f(r'v't) (7-4)N .C.

imply? Let us find its equation, and compare it with Equation (7-2)

( + v + v' • V' + a • V + a' • Vv )f2

+ i r [F(r-r'') Vv f(r'v't) f 2 (rv~r, v, t)
r' vvrrvt

+ F(r'-r'') • Vv, f(rvt)f 2 (r'vTr1vt't)] = 0 (7-5)
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2 is approximately equal to f2 when the two particlesWe se tat NC

are far enough apart that their mutual force may be neglected, and
when the system is such that in the f3 term only the particles con-
nected by a force need be treated as correlated; that is,

f3(rv,r'v',r''v''t)==f2 (r'v1 rllv' t)f(rvt) (7-6)

* in a term in which r' and r'1 are connected by a force. Acting on
the belief that in a multiparticle system with two-body forces the
two-particle function f2 will be of greater numerical importance
than f , no matter how strong the forces are, we conclude that the
approximation expressed by (7-6) will be of extreme generality, and
especially even so when the arguments r, r' of f 2 are close to one

2 2another. But fNC is then a bad approximation to f Consequently,
Equations (7-1) and (7-2) together with assumption (7-6) in the
force term of (7-2) provide a reasonable way to terminate the other-
wise endless set of coupled equations.

We can now derive an equation for the quantity

D(rv,r'vlt) = f 2 (rv r'v't) - f(rvt)f(r'v't) (7-7)

Let us first introduce a simplifying notation. Let us number the
particles 1, 2, 3, etc., and let the number stand for the full set

of position-velocity variables. For example, 1 = (rlvI) , 2 = (r 2 v 2 )
3 = (r 3v 3).... The variable t is the same in all functions and may
be ignored. The operator

!a
at v 1  + 1 * Vv, + v 2 •2 +a 2 • 2+-

(7-8)

may be called L(12...) It describes the linear, noncorrelated
part of the motion of the "typical particles" 1, 2,.... The oper-
ator M(12...) will describe the mutual forces. As examples, M(l) = 0,
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M(12) 1 F(r -r ) V + 1 F
m 1 2 v1  m (r 2 -r) V2

111
M(123) = -(F(rl-r2) + F(r-r)) r V + 1 () V + - (). 7m 12 13 v1  m v2 m v 3

(7-9)

with the variable in the force terms appearing in cyclic order.

The superscripts on fl f 2 ... may be left off where the arguments

of the functions are given, for then the "order" of the distribution

function is obvious. Finally, we may let

1 F rl-r2 V = A(1-2) (7-10)
m 1 r2  v

so that, for example,

M(123) = A(12) + A(13) + A(21) + A(23) + A(31) + A(32) (7-11)

In this notation, the two equations we intend to solve are

L(1) f(1) + j A(12) f(12) = 0 (7-12)

2

and

[L(12) + M(12)] f (12) + I (A(13) f (13) f (2) + A(23) f (23) f (1)) = 0

3

(7-13)

Let

D(12) = f(12) - f(1) f(2) (7-14)
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I Since

L(12) (f(1) f(2)) + I C(13) f(13)f(2) + A(23) f(23)f(l)) = 0 (7-15)

I3
we find

[L(12) + M(12)] D(12) = -M(12) (f(1) f(2)) (7-16)

The function D(12) may be introduced into the equation for f(1) in-

stead of f(12). Before we do so, though, we can increase the sym-
metry of our equations by replacing A(12) by M(12) in Equation (7-12).

Note that

M(12) = A(12) + A(21) (7-17)

The A(21) term gives zero under the integral J, for this contains?v 2 2vv2

4 F(r'-r) V f (vv') which integrates exactly, leaving f2 (vv')
evaluated at the limits of the v' integrals. In any physical system

j there will be no particles of infinite velocity, so that the inte-
grated term is zero. Thus, Equation (7-12) can be rewritten:

I
L(1) f(1) + I M(12) f(12) = 0 (7-18)

1 2

and the substitution of (7-14) gives

IL [1l + I M (12) f (2)] f (l) + I M(12)D(12) = 0 (7-19)

2 2I
The operator added to L(M) arises (of course) in the noncorrelation

I approximation. Written out it is
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M(12) f(2) = A(12) f(2) = m F(r-r')f(r'v't)

2 2 r'v'

It is often referred to as the "average-force" term, and was the

basis of Vlasov's and Landau's treatment of the long-range forces
in plsma Aswe entone f2 is (together with (7-6)) a good

in a plasma. As we mentioned fNC

approximation to f when the particles are "far enough apart."

Since the Coulomb forces do not have a finite range, it is diffi-

cult to define for them the precise region of validity of the non-

correlation approximation. It proves to be applicable to the plasma,

nevertheless, because of the plasma's ability to shield charges.

The effective forces in the plasma are of finite range, so that

the solutions using the noncorrelative approximation are consistent

with the approximation. But when the forces are solely or primarily

short-range, this term has contributions only from one or two

neighboring particles: in a distribution theory such a constribution

is of negligable weight. The last term of Equation (7-19) then is

most important.

Our main problem now is to solve (7-16) for D. The equation is

inhomogeneous, and may be solved by a Green's function for the

particular solution. The homogeneous solution will have an arbi-

trary constant multiplying it which must be adjusted to the physi-

cal problem ("the boundary conditions") . In fact, there cannot be

an homogeneous solution -- the constant is zero -- because only

that part of the force on a particle [f(l)] must be included which

is specifically due to the self-consistently positioned neighboring

particles that are within the range of the force. An homogeneous

term Do would make no reference to this self-consistency, but the

inhomogeneous solution of Equation (7-16) would, by virtue of

the source term on the right hand side.

For the construction of the Green's function we shall need to

indicate the time variable t at which the particle variables are

specified. Let G(12t, 34t 0 ) be the solution of
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(LM12) + M(12))G(12t,34to) = b (t-t )6(1-3)6 (2-4) (7-20)
0 0

In the usual pictorial manner of speaking, G is said to take particles

3 and 4 at time to into particles l and 2 at time t. That is, G des-

cribes the details of the orbit and momentum exchange of two particles

under the influence of the inter-particle force. In full detail, but

leaving out the external acceleration A, we have

0 1 1 2
( + vl"I + V2 V2 + L F(rl-r2). "•V + m F(r2- rl} 7

at 1 1 2 2 m 1-2 v m 2

x G(r 1 v 1 r 2 v 2 t; r 3 v 3 r 4 v 4 to) = 0 (t-t 0 ) 3 (r 1 -r 3 )b 3 (vl_v 3 ) 3 (r 2 -r 4 )

x b3 (v 2 -v 4 ) (7-21)

All of the delta-functions, with the exception of the first, are

three-dimensional, e.g.,

53 (r 1 -r 3 ) = b(x1-x 3 ) 6 (yl-y 3 )6 (zl-z 3 ) (7-22)

We write the solution as

D(12t) =- f f f G(12t,34t 0 )M(34)f(3t 0)f(4t 0 )) (7-23)

3 4 t

Application of L(12) + M(12) to this equation leads to Equation (7-16)

in view of Equation (7-20).

There remains one element of uncertainty in G -- it may be
"retarded" or "advanced" or a mixture of the two. Looking at

Equation (7-23) we realize that D(12t) should depend only on the

earlier particle distributions, since all of the dynamical processes

are causal. This means that G(t-t 0 ) should be "retarded", i.e.,

G = 0 if t < to.
0l
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Our interest in the solution of the two coupled equations stems,
in the present instance, from a desire to treat collisions more

accurately than is possible with the Fokker-Planck operator. We can,
for this purpose, try to solve Equation (7-21) without the external

acceleration a, which is almost never as strong as the internal ac-

celerations m F(r-r') , and acts mainly to provide a net drift super-
imposed on the "chaotic" collisional-diffusion processes. Furthermore,

the quantity D gives the "closer-in" effects when contrasted with the

"long-range" effects of f2NC Hence, as a kind of orientation in the
problem of collisions, and also for an improved model for collisions
in the plasma, we treat the problem of hard spheres colliding. This
is certainly an improvement over the Fokker-Planck procedure which
applies, as we have noted before, to the motion of large molecules
suffering many small impacts in the surrounding medium of small
molecules. Whether the collisions are among electrons, among ions,
between ions and electrons, or between charged-particles and neutral
molecules, we expect some improvement in description.

Let us carry out the analysis as far as possible without special-
izing the force. Hard-sphere collisions will prove to simplify the
final analysis. Since we know that in a two-particle collision total
momentum is concerned, and since the force lies along the line between
the centers of the (pt.) molecules, we shall introduce appropriate

variables. It is enough, for the present, to treat one kind of mole-
cule to illustrate our ideas.

The center of mass (R) , the relative distance (r) , the center
of momentum, V, and the relative velocity (v) of particles 1 and 2

are

1 vI + v 2

R (r + r 2) V- 2

r= r1 - r 2  v= (v - v 2 )

1 21 1 2 1 2 2
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A similar set of variables, constructed from particles 3 and 4 will
be called R0Vo0 rovo. It is easy to verify that the gradients trans-

form as follows

11
V V + 7 V -V + v

r 2 vR r v 2 V v 7-25)

r22 r v2 V

so that

v 1  rV + v2 * V r v Vr + V VR (7-26)

and

V - V = 2V (7-27)v 1  v 2  v

Furthermore, since the Jacobian of the transformation (7-24) is

unity, the delta-function term in Equation (7-21) may be rewritten

directly in terms of the new variables. The resulting equation
makes use of Newton's third law:

F(r 2 - rI) = -F(r 1 - r 2 ) (7-28)I
and becomes

ai V • VR + v • Vr +m2 F(r). Vv) G(RVrvtRoVorovoto)

- b(t-t0 ) b(R-R0 ) b(V-V0 ) b(r-r0 ) b(v-v0 ) (7-29)

"We have used the same symbol for the Green's function written in terms

of the new variables. We shall speak quite generally of Equation (7-29)
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as describing a collision, although it will describe a bound system

also when the forces can support one. Inspection of Equation (7-20)
shows directly that the total "momentum" V is unchanged during the

collision. Hence G contains 5(V-V ) as a factor. Further, we can
also remove a factor expressing the fact that the center of mass
moves in a straight line:

G = b(V-VO) b(R-R - V (t-t ))G(rvtr0voto) (7-30)

where

+ v • Vr +m2 F(r) • Vv] G(rvIrvo)

i(r-r 0 )b(v-v)0 (t-t 0 ) (7-31)

For a force which can be derived from a central potential, X:

F(r) = - X - V X rl X, r (7-32)
A VX(Ir a aIri

in which r is the unit vector along the radial direction (from the

origin of coordinates). Consequently, a spherical coordinate system
for r together with a suitable chosen velocity coordinate system at

each point of space will simplify Equation (7-31) in such a way as
to make clear the fact that the force between the two particles only

causes a radial acceleration. The transformations for the coordi-

nates are

x = Irl sin Q cos

y = Irn sin Q sin 6 (7-33)

z = fri cos 0

whose Jacobian is (r 2 sin Q)-I
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The transformation of velocities has to depend on that for
coordinates. For if xyz are imagined to be functions of time, then
so are rG$, and the velocities v v v = x i would be related to
the time derivatives r Q by means of the following equations (ob-
tained by differentiating Equation (7-33)):

vx= sin 0 cos 6 + Q r cos Q cos - r sin 0 sin6

Vy = r sin Q sin 6 + 6 r cos 0 sin + r sin 0 cos

v = r cos 0 - 6 r sin 0 (7-34)

2 1whose Jacobian is also (r sin Q)-i In the present formulation --

which might be called the hydrodynamical treatment of the two-body
problem -- the quantities r 6 ý have to be considered as independent

variables. Call them vr v 0 Vo. We find

vr = vx cos 0 sin 0 + v sin 0 sin 0 + vz cos Q

v=(1 vCos CosQ+v sin 6 cos Q- v sin 0)vQ=r Vx co o y z

V 1 (-v sin 6 + v cos 6) (7-35)
$r sinQ0 x y

Now, G(xyz, vxvyVz) becomes a new function G(rQjVv Vv) . If we
recall the rules

A av A

3 (r(x) W..V(XlVx) v. (xr aGG + r8G .. (7-36a)
5x r 1ax ar ax av r

and

a aVr aG +ax ax avr(73b
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we shall have no trouble converting Equation (7-31) to its new form:

S+ Vr a + vQ a + v., a + (rv 2 + r sin2 g v 2 -_2 X) a

V76 r v7r si 9aa0 V3 -m avr

2VrVQ 2

+ (- r + v sin 0 cos 0) a-
r J6avo

2v vA
+ r 2 v v6 cot Q) G

r 0 av-

6 (t-to) 6 (r-ro) b (0-00) 6 (36-0o) 6 (Vr-Vr O)b5(VQ-VG ) b (vjý-vj°)

(r2 sin 00) 2

(7-37)

From angular momentum conservation we can deduce three variables
LxLy and Lz that greatly simplify Equation (7-37). Converting r x v = L

to our new coordinates gives

L = -r 2 (v0 sin 6 + v sin 0 cos 0 cos 6)

Ly = r 2 (v0 cos - vo sin 0 cos 0 sin •)

Lz = r 2 v, sin2 0 (7-38)

We can use L L L to eliminate v vo and Q I not f becauseSx y 0J [not yo zsts
L= - L and L =- Li. Any function of L or L or L satis-x as6 y y a)6 xj x y zfies the homogeneous part of (7-37). We therefore choose a factor

of G that will reduce to part of the inhomogeneous term when the

remaining variables are correctly given. In fact, we choose

G(rQj vrvv0v) = 5(L x-Lx 0 )b(L -L o 0)5(L -L 0)
yy• z z

x G(rv r LxLyLz) (7-39)
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General formulas of use are

L2 = 2 + L2 + L = r 4(v2 + v2 sin2 Q);

x y z

L sin Ly cos j6=r v r 2 sin2 2

i L2
L2 - (-L sin + L cos )2 =r v sin2 9- zx y VOsin 2 0

From these we conclude that

v6 - 1[L2 + (L cos + L sin 6) 2 ] (7-40)-$~ r 2 L L

z

With the new choice of variables,

at 2 2X') a L 2 + (L cos 6 + L sin 6)
+ _v + Z X r(rvr

3 r ar2L
z

r2 sn 2  o Icos 20.o Ivo 5 (t-to) 6(r-ro)b (vrVrO) b(0-0

(7-41)

The appearance of jv•°j requires one comment. We see from
Lz = Lz that the sign of v6 is a constant -- i.e., the particle

always continues in the same angular direction around the center
of force. Th. Odependence could be greatly simplified because, as
is well known, the motion of the particle is in a plane fixed in

space, determined only by the angular momenta. In fact, if V0 = 0
and 0 = Tr/2 initially, then v0 = 0 and 0 = T/2 for all time: i.e.,
Lx =Ly = 0, and the coefficient of a/^6 is simply L z/r2

angular velocity in the plane.
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Equation (7-41) can be simplified in its r-dependence by use of
the constantcy of energy. Apart from a factor of m/2, the reduced mass,

the energy is

2 2
E = r + 1 L + 2X(r) (7-42)

r

and any function of E satisfies the inhomogeneous part of (7-41).
Using

L2 4x(r)

vr 2 E 4- (7-43)

we readily verify that

b~~t~t - 1 -4- r dr' Vl--I, I IrO (7-44)

solves (7-41). If the actual discontinuity comes from a factor H(t-to)--
that insures that G is retarded -- then (7-44) gives 5(r-r ) exactly

as written. Then

5 (E-E o)IV °1 (7-45)

in turn gives

5(Vr-Vr°)

exactly. Of course the integral in Equation (7-44) must be taken
over the complete orbit between r0 t0 and rt, so that vr in
Equation (7-43) must be understood to be the positive root when r

is increasing, and the negative root when r is decreasing. Inter-

estingly, the IVr 0 of (7-44) and (7-45) cancel. All that is
needed to complete the solution is a b-function of the form
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I gdr' r (7-46)

L g(ri) f f(01)

which satisfies the homogeneous part of Equation (7-41) , and reduces
to the remaining factors of the inhomogeneous part namely

S2 sin2 00 IcOs 2GoI JvO°I 6 (0 - •o)

0Swhen r = ro0. Clearly (7-46) becomes

If(Io)l b(0-o) (7-47)

in this case. Now (7-41) is readily solved by quadratures, and we
find that

2L 4X 2

g(r) = r 2E- -- (7-48)
r

(again with the appropriate choice of sign) while

f L() - 2 + (Lx cos + Ly sin 6)2] (7-49)
z

Using (7-38) we find that

f (0) = r 2v6 (7-50)

so that the final result is

G = H(t-to) )(L -L °)s(L -L 0 )b(L -L 0 )5(E-E ) x (t- - dr')0 x x y y z z o 0 S rI ror

0 r
x(j6 ) (r') sin 2 cos 20  (7-51)

00 ro0  rV
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where

H(x) = 1 if x > 0

= 0 if x < 0

and

a H(x) = b Wax

This remarkable formula is correct for any two-body central force

problem. Let us use it to derive the Boltzmann Equation for a

hard-sphere gas.

In a collision between "hard" spheres the interaction acts
only for one instant of time, and the pair of spheres does not move

any distance during this instant. Actually, no atoms are perfectly

hard, but instead may be visualized as having a core of increasing
hardness. The only effect of a collision of hard spheres will be

to reverse the relative radial velocity, the reversal being the

more sudden the "harder" the spheres. When the centers of the

spheres, of radius a, are more than 2a apart, the potential between
them in zero. At r = 2a the potential is repulsive (positive) and

rises steeply to a large value. The simplest analytical representa-
tion which captures the physics of the collision process is as

follows:

X(r) = (2a-r)K r < 2a

= 0 r > 2a (7-52)

Hence, the radial force is a constant (large!):
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F = -X' (r) = K r < 2a

S= 0 r > 2a

= X H(2a-r) (7-53)

whereI
K> 0

Let us write out Equation (7-19) with Equation (7-23) substituted

to see how this choice for F simplifies the equations

(a + v • V) 1 f(it)

1- I I I F(rl-r)'( 1 -v2) G (ret 12t, 34to)

2 1 2
42

f4- 'I 'j r I I I H(2a-r) H(2a-rO)
m 2 R V v r t

1 0 0 0 0 0

a Gr a ff 2_KYm H(2a-r) - ff (7-55)
avr ret avr M 2 avr

I Making use of the fact that K is very large (compared to other

forces, e.g., the centrifugal forces) we can simplify Equation (7-51).

In particular, in b(t-...) let us replace dr by dvr. Using E=E0o
we find that

I
12]
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dr_ r m
Vr 2K L r

m~ 3
r

when K is sufficiently large. Hence,

b (t-t b (E-E O) - 6 (t-t a• (VV r5(r-r - V 2
r 0

(7-56)

Because of the first factor of (7-56), we can replace H(t-t ) in

(7-51) by H(vr-vr 0 ) . Equation (7-56) shows that as X-ooI t-Pt,

Sso that in (7-51) , vG', v 1 V ), v J-v 0 and the net con-

stant is unity:

Upon substituting G into Equation (7-55), the term resulting

from a/av H(v v r0) = 6(v r--v ) exactly cancels the 2nd term on
the right-hand side of (7-46). The remaining terms must be evaluated
in the K-goo limit. Several of the integrals may be performed di-

rectly, leaving the structure

2a co

I 'J~J dr 0  J' dv r H(v r~vr) a j [r-ro (v2 _v 2
2 t0 a -0o

It-o 0- 2 rv-rV•o]I a-Vo ff [ro ; yr v0 void.v.tvt 0 )o ]

(7-57)

Now

2a
dr o [r-ro - M v 2 _ -1

02 (yr r 000
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if r - M (v2 - v2o) is less than 2a, = 0 otherwise. Hence, we can

write

H[2a - r + M (v2 - V2

for it. Performing also the to integral leads us to

00

m dvJ' fvd -Hvr ) av
2 -c o o r

x H [2a - r + m (v - v2 ) ff
LY r r0  a

x r - M (vr2 _ ) 2 Vr V V0 ) VR + V •(Vr-Vr)t+ (V-V

(7-58)

Now in this equation a/aVr must be understood to act only on the Vr0
00

dependence that existed in ff before we did the to integral; but

a/avr acts on the vr dependence in H and ff. To complete the deriva-

tion, we have to note that the K--.oo limit may be performed in ff

before a/av or a/avro are applied, but not in H. The reason for

this is that ff will be a smoothly varying function of its arguments,

whereas H's properties change discontinuously when it loses its

v dependence! So, set K = 0o in ff, and evaluate

"2K aH [2r m 2 2 a
m v Ha + r (y r r = vr •(mv H

"r�r 2)

Vr 2a-r (v -V2o)] (7-59)
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Since r < 2a, (7-59) requires the Vro integral to be restricted by

the condition Vro > Vr Subject to this restriction, however, (7-59)
may be replaced by its limiting value

vr5 (r-2a)

Since H(vr - vro) implies vr > vrot the Vro integral extends to vr

when vr is negative, and -vr when vr is positive. Thus, in either [j

case of the vr integral

0
(A + Vl Vl) f (rlvlt)

= f S Vr 5(r-2a) ff [rQg,- vrv v$, V,Rt] (7-60)
r 2 v 2

where

V +V-
V 2 21 Vl-V2

rr2
R = 2 r = rl-r

2 1 2

and

f=fR 1  v* 1 v*I
ff = f(R + r, V + -V) f(R - • r, V - 7-)

with i

v* = -Ivri v0 v, (7-61)

The collision term has a clear meaning. The vr > 0 and vr < 0
contributions determine respectively the "IN" and "OUT" contributions.

1

L.
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The rate at which particles are scattered out of the r1v1 component
of f involves the velocities v1 and v 2 before collision; but for
particles scattered into the r1v1 component depends on the velocities
v 1 and vI that must exist before collision in order that v1 and v
occur afterwards! Now R + 1/2 r = r1 and R - 1/2 r = r2, and

v*
V 2 1l

v*
V - v- when vr < 0

v*
V + 2 vl - e(e-v)

V - •-=V 2 + e(e-v) when vr > 0

where e is the unit vector joining the centers of the colliding hard

spheres.

One can easily verify from these equations that the conservation
of mass flow still holds. The methods which are usually applied to
the Boltzmann equation are thoroughly described in Chapman and
Cowling's work on "The Mathematical Theory of Nonuniform Gases"
(Cambridge Press, second edition, 1952). We shall consider an at-

tempt at deriving directly from the linearized equation the dis-
persion relation describing the possible modes of the system. At
a later date the same procedure will be considered for the more

interesting problem of the plasma.

1
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CHAPTER VIII

LINEARIZATION OF THE BOLTZMANN EQUATION FOR HARD SPHERES

j Suppose that a gas of hard-sphere-like particles, at a finite
temperature, is sharply disturbed so that a small group of particles

is set moving in a definite direction with high speeds, In fact,

suppose that a signal is communicated to the gas by varying the amp-
litude of the disturbances with time. The particles so excited repre-
sent a certain amount of momentum and energy injected into the gas
which, if the gas is isolated, will be conserved throughout the future

f history of the whole gas. When the density is low, so that the
mean-free-path is considerable, the disturbance-signal will be found

across the gas with very little change. When, however, collisions
come into play quickly, the energy and momentum gets shared over
larger and larger groups of particles. The limiting situation may
be described as follows: the final motion of the gas as a whole
resembles the gas motion before disturbance, but with a slightly
higher average energy per particle (a higher gas temperature). The
average momentum is lost to the vessel containing the gas. No sig-
nal is received across the gas if this complete thermalization takes
place in times less than the least time possible for a remnant of the

j original signal to get through in any recognizable shape.

Now, except for the very low density case, the original signal
j will be thermalized locally; that is, the impulse of energy and

momentum rapidly will be distributed to a larger group of particles,
I though not to the whole gas. In this state of its evolution, the

impulse will consist of a small region of the gas of slightly
higher temperature than the rest of the gas, and of small nonzero

average momentum compared to the rest of the gas. Whether any part
of the signal will be detected after this stage has been reached
can be studied by treating solutions of the gas equation which
differ only slightly from the equilibrium solution. This approach

j permits us to linearize the gas equation (in this case, Boltzmann's

equation) and simplifies the ensuing analysis.
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That such a treatment must -- at a finite temperature -- lead

to the possibility of transmission of signals is known from direct

experience with the phenomena of sound, and also from the possibility
of deriving the sound velocity from the linearized form of Euler's

Equations, together with the thermodynamic equation of state for

an ideal Qas. By an "Ideal" gas we mean one without any important
interaction except that its particles must be capable of interchang-
ing energy and momentum to bring about an equilibrium velocity dis-

tribution. (Our hard-sphere gas approximates the ideal gas in a
reasonable way.) The actual calculation is simple. The time deriva-
tive of the mass continuity equation reads

a2 P V.a j(8-1)
at ý

The linearized Euler Eq. relates a/at j to the pressure, p.

a j = -V p (8-2)
at

The equilibrium equation of state, for an ideal mono-atomic gas, is

p = KT N = m p (8-3)

But adiabatic variations of the pressure follow the familiar law

p cv (l/v) 3 p

Thus, the density fluctuations are given by

a 2 V 2 VP (8-4)
Vt 2 p

-28



I
S-2023-1

which has the dispersion relation

Z 2 = 2 k 2  (8-5)I s

with

Is (8-6)

v s is also one definition of the average thermal velocity. The prob-
lem we set for ourselves is to derive the dispersion relations which

I follow from the hard-sphere equation; to investigate the way parti-
cles of finite size contribute damping terms to equations like Eq. (8-5).
This means, in effect, deriving the thermodynamic equations of state
from first principles. That this can be done to some extent was
shown by an analysis of Wang, Chang, and Uhlenbeck, an outline of
the method being given in lecture notes of Uhlenbeck. (8) We shall
take that method as a guideline for our researches into the micro-
scopic derivation of macroscopic wave-motions. In the present Chap-
ter we shall give a brief treatment of it.

We have derived the Boltzmann Eq. in the preceding section.
We transcribe it here in a new form by letting

rI - r 2ie = rI 1 r 2

(rI - r 2 )
vr r r 1  (v 1 v.2 e (v - v 2 )

I and

v v1  Vr e

vt =v2 + vr e

1 129

I



S-2023-1

The result is

(a + vI • Vl)f(rlv t) = F vr (Ir r 21 - 2a)

r 2 v 2

fI f1(vrlt)f(r 2v 2 t) Vr < 0

f(rlv1rt)f(r 2v 2It) vr > 0 (8-7)

We shall take the step of making the hard-sphere gas into an
ideal gas. This can be done by imagining the radius a of the spheres
to be so small that we can replace r 2 by r1 in f because of b(jrl-r2 f-2a).
The direction of the vector rI - r2, or of e, is still quite important,
however. After setting in f(r 2) r 2 % r1 we can then introduce instead
of r1 and r 2 the variables r = r1 and = r1 - r 2. The integral over
r gives (2a)2 and an angular integral Sd2e over the directions of e.
This leads to

+ V V)f(rvlt) = (2a) 2 J d2eJ (dv 2 )vr f(rvlt) f(rv2 t) Vr<O

f(rvjt) f(rv't) vr>0

(8-8)

The cumbersome restriction on vr can be removed now by replac-
ing vr by E vyr where indicated, and extending the integrals over
the whole range with an extra factor of 1/2.

(L + v V) f(rvlt) = l/2(2a) 2 J dQ I dv 2 le.(v-v 2) {f(rvit)f(rv2t)
e v2

- f(rv1 t)f(rv 2 t)} (8-9)
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We linearize Eq. (8-9) by setting

f(rvt) = n f o(V) (1 + g(rvt)) (8-10)

where n0 is the density of particles N/V, and f (v) is the normalized

Maxwell-Boltzmann function:

a 3/2 2
f (v) (a) e-av0 7T
a = m/2KT

f(d3 v)fo(v) = 1 (8-11)

We neglect terms involving products of two g's. The terms without

g are

dd j dv 2 e.(v 1 -v 2) {f ov)fo(v2) - fo(v 1) fo (v 2)} ) (8-12

e v 2

which vanishes identically. For

2 2 2
(vl) 2 = v2 _ 2 vr (v1 * e) + vr

2 2 2(vI)2= v• + 2 v (v 2.e) + v2v2 r 2 r

and

(v{ 2 + (2') 2 = v + v 2  (8-13)

since

(v 1 - v 2 ). e = vr
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Hence

f (V )fo(V) v fo(vl) f(V 2 )v (8-14)

Therefore,
no

a + vI • V)g(rv t) _ n (2a) 2 dQ dv2le.(vl-v2)] fo(V2)

e v 2

x {g(rvjt) + g(rvlt) - g(rvlt) - g(rv2 t)} (8-15)

in which we have used (8-14) again. The r and t transforms of
g(rtv) , which we call Gk,(v), satisfies:

(c - vl'k)G(vI = i - (2a) 2 5 dQ I dv 2  v
e v 2

x {G(vj) + G(v) - G(vl) - G(v 2 )} (8-16)

or

(a - vl.k) G(v) = i J G(v) (8-17)

in which J is the linear integral operator acting on G.

There is a formal approach to (8-17) that is very suggestive.
Let us suppose that there exist orthonormal eigenfunctions of J,
and let them be *n with Xn the eigenvalues. Then

Jn (v) n~n(v)

where

5(dv)4n(v)*m(v)fo(v) = 5mn (8-18)
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There are five functions of velocity that automatically make

the collision term vanish. They are, apart from constants and

"orthogonalization,

g = 1, a constant

g = V9 the three components of velocity

g = v 2  the kinetic energy.

Hence, there are five zero-eigenvalue eigenfunctions of J. The
remaining eigenvalues are negative. For

= J(dv1 )f f 0 (V 1 )*1 (v 1J [* i (v 1]

id )f 21 (dVl l [*i

and the numerator can be written

n
J(dv)f *fJ(*) = -1/4 -0(2a) fdQ2 dv1 fdvle.(v--~lfvfv

e

x {i~(vj') + *Vi(v2') - \Vi(vl) - *i(v2}1

We get this result by first interchanging v1 and v 2, then interchang-

ing vV 2 and vlV2 , and taking the average of the four results.

That most of the eigenvalues are negative means only that the
collision term causes damping of most disturbances.

The only disturbances that the collision term cannot influence

are changes in density (1), momentum (v) and energy (v 2) , i.e.,

I temperature, of the gas.

If we knew the orthonormal eigenfunctions, and if we knew

that they formed a complete set, we could expand an arbitrary G(v)
in a series:
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G(v) = j Cm(k0))*m(V) (8-19)

m

Then (8-17) becomes

z cm (co-v.k - iXm)*m(V) = 0 (8-20)

m

or

(W0 + ixM) cm - k VmnCn = 0 (8-21)

n

where

Vm= j (d 3 v) ým(v) V*n(v) f0 (v) (8-22)

is a matrix element of v.

The dispersion relation for wave motiones in the gas are given
by the condition that (8-21) have a solution:

det(w0 + i m) %m - k v vmn = 0 (8-23)

The problem of the completeness of the 4,m has not been solved,
neither in general nor for hard-sphere collision terms. Nor is it
even known that the spectrum of %'s is discrete, although both
completeness and discreteness are entirely plausible. Still,

Eq. (8-23) is very revealing. Let us restrict ourselves only to
the five eigenfunctions for which X = 0. If we solve (8-23) for
this very restricted subspace of the full function space of the

*mg we find -- with Wang, Chang and Uhlenbeck -- the dispersion

relation for sound waves.

134



S-2023-1

Since f (v) is normalized, 1 = 1 is also normalized (relative

to fo(V)). '2' 43 and are porportional to vx vy vzI respectively.

They are therefore orthogonal to *1. For normalization we find

1*v = IaV

Now v is not orthogonal to *1, but v2 - T is. The normalized func-

tion is

,•o• ;5 •v _ 3,
4f5 = a 4J73 (v2  TaI

The matrix elements of v arex

1 2 3 4 5

1V 0 0 0 0

2 1 0 0 0 1

3 0 0 0 0 0

4 0 0 0 0 0

5 0 1 0 0 0q•a

Ifky k =0, we get

1 2 3 4 5
-k

1 •-x 0 0 0

-k 5-x-
2 X-- 0 0

= 0 (8-24)
3 0 0 0

4 0 0 0 0
-k

5 x 0 0
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Or

5k 2

W3 ( 2 _x) =0
- 6a

But a = m/2KT , so that

2 5 XT k2
3 m x

By symmetry,

2 - KTk 2  (8-25)

Thus, there is every hope that a purely microscopic approach

to the problem of wave-motions in a multi-particle system will suc-

ceed, and without undue analytical complications. The alternate

approach, the Macroscopic methods are best suited to the formulation

of boundary conditions when such conditions are easier to obtain

empirically than theoretically.

To continue with the solution of the linearized Boltzmann

equation, let us note that the nonzero collision terms are numeri-

cally very important. Returning to Eq. (8-15) , we can estimate

the magnitude of a typical term, the third on the right-hand-side.

Introducing transforms, bringing it to the left side, and replacing

v1 -v 2 by v' and v1 by v, we get

i no 2a)2• •(-'Gv
w - v • k + no(2a) dv' dQ le'vlIfO(v-v')G(v)

vt e

Now

SdQe Ie-v' = 27TIvfI

as can be seen by letting v1 be along the polar axis of the e-

coordinates in a spherical system. At zero temperature
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fo(v-v') = ( (v-v') , and the complex factor contains the fre-

quency

2 v
V = rno(2a) IvI (8-26)

Now, we do not expect a sound-wave at zero temperature, but the

quantity of (8-26) will be typically important as a measure of the
collision rates. To get an idea of the difficulties that are in
store in any microscopic treatment of gases, consider the magnitude
of v for air at room temperature. To sufficient approximation we can

treat a nitrogen (N2 ) gasp let 2a -. ' 3.5 x 10-8 cm be a typical atomic
diamter, m - 43 x 10-24 gms per molecules; a density of 0.00129 gm/cm

19 oleads to no • 3 x 1019 molecules/cm3; a temperature of 300°K leads

to a thermal velocity of 4.6 x 104 cm/sec; so that a thermal mole-
cule experiences a collision frequency

v ^ 4 x 10 9/sec (8-27)

With such a value, how can a sound wave of 103 cps frequency travel

more than about

d vt-h 10-5 cm (8-28)

For v in G(v) would completely dominate w, in fact wiping out all

reference to w! For this not to happen in practice, the remaining

terms in (8-13) must cancel off most of this damping effect. What
happens in practice is this: a disturbance of the air, g(rvt), can

be thought of as the superposition of characteristic disturbances,
or "eigen-disturbances". These include changes that leave a perman-

ent alteration in the density, momentum and energy of the air
(X = 0). together with all other possible changes in the local
velocity distribution, which are transient (% 91 0). The latter
are, in fact, rapidly damped, but the former survive as long as
"the conservation laws permit. A locally produced sound dies away
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with distance, since the "density-momentum-energy" is shared over larger

and larger surfaces with time. But an ideal plane-wave remains intact
because each element of the advancing wave front receives

equal contributions of "density-momentum-energy" from all sides.

Sound waves will exist in a plasma also, as can be understood

from the great generality of the processes involved. But more often
than not the excitations of the plasma that are of most interest are
those for which % 51 0, and for which a knowledge of Xi (and *i) are
of the greatest importance. In this report we have dealt with hydro-
magnetic non-damped wave-motions derived from a model of the plasma
which ignored collisions entirely. That we were justified can be

argued only by showing that indeed collisions are unimportant (at
zero temperature). The sequel to this report will consider this

question. We can, however, note briefly that unlike the hard-sphere
case, for which a collision frequency exists for a particle of non-

zero velocity in a gas at zero temperature, there is no intrinsic
radius of repulsion for electrons and ions. In fact, the long-
range forces, and the mixture of repulsion and attraction in the

plasma, produces a variety of collective phenomena which the hard-
sphere model can in no way duplicate. The search for solutions to
the problem of the wave-motions in a plasma promises great rewards.
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